

OHIO VALLEY ELECTRIC CORPORATION

3932 U. S. Route 23 P. O. Box 468 Piketon, Ohio 45661 740-289-7200

WRITER'S DIRECT DIAL NO: 740-289-7259

June 29, 2023

Delivered Electronically

Mr. Brian Rockensuess Commissioner Indiana Department of Environmental Management 100 N. Senate Avenue Mail Code 50-01 Indianapolis, IN 46204-2251

Re: Indiana-Kentucky Electric Corporation- Clifty Creek Station Revision to the West Boiler Slag Pond Phase 2-4 Closure Plan

Dear Mr. Rockensuess:

As required by 40 CFR 257.106(i)(4), Indiana-Kentucky Electric Corporation is providing notification to the Commissioner of the Indiana Department of Environmental Management (IDEM) that a revision has been made to the Clifty Creek Station West Boiler Slag Pond Phase 2-4 Closure Plan. The newly revised plan will be placed in the facility's operation record as well as the publicly accessible internet site, which can be viewed at http://www.ovec.com/CCRCompliance.php

If you have any questions, or require any additional information, please call me at (740) 289-7259, or you can contact Tim Fulk at (740) 897-7768.

Sincerely,

Jeremy Galloway

Environmental Specialist

JDG: tlf

Stantec Consulting Services Inc. 9200 Shelbyville Road, Suite 800, Louisville KY 40222-5136

June 27, 2023

Project/File: 175531036

Mr. Gabriel Coriell
Indiana-Kentucky Electric Corporation
3932 U.S. Route 23
P.O. Box 468
Piketon, Ohio 45661

Reference: Phases 2-4 Closure Plan

Clifty Creek Station West Boiler Slag Pond

Madison, Jefferson County, Indiana

Dear Mr. Coriell,

The attached Phases 2-4 closure plan for Clifty Creek Station's West Boiler Slag Pond (WBSP) was prepared by Stantec Consulting Services Inc. (Stantec) for the Indiana-Kentucky Electric Corporation (IKEC).

The initial closure and post-closure plans for the WBSP were posted on October 11, 2016 as part of the U.S. Environmental Protection Agency (EPA) final coal combustion residuals (CCR) rule demonstrations. The plans were conceptual and subject to the completion of all necessary environmental reviews. Though conceptual, they demonstrated compliance with the requirements set forth in 40 CFR 257.102(b) and 257.104(d).

IKEC, Stantec, and the Indiana Department of Environmental Management (IDEM) met in Indianapolis on December 9, 2019 to discuss the requirements for Indiana CCR surface impoundment closures. Addendum 1 was prepared for the closure of 9.2 acres of the WBSP (Phase 1) to incorporate changes requested by the state. IKEC submitted Addendum 1 on February 12, 2020 to IDEM Office of Water Quality (OWQ) and Office of Land Quality (OLQ), Waste Section. IDEM's approval of the partial closure (Phase 1) of the WBSP (SW Program ID 39-005) was received on February 3, 2021.

To address the remaining footprint of the WBSP, IKEC submitted the Phases 2-4 closure plan to IDEM on June 17, 2021. No comment has been received from IDEM on this proposed closure plan to date.

The plan was prepared in accordance with the accepted practice of engineering and accurate information at the date of its submittal to meet the requirements described in 40 CFR 257.102(b). Changes to the closure plan may be required. Revised plans will be posted at that time.

June 27, 2023 Mr. Gabriel Coriell Page 2 of 2

Reference: Phases 2-4 Closure Plan

Clifty Creek Station West Boiler Slag Pond

Madison, Jefferson County, Indiana

Regards,

STANTEC CONSULTING SERVICES INC.

Matt Vaughan

Principal
*Licensed in KY, IN

Phone: (502) 212-5088 matt.vaughan@stantec.com

stantec.com

Attachment: Stantec Consulting Services Inc. (2021). Closure Plan. Clifty Creek Station. West Boiler Slag Pond Closure. Phases 2-4. Madison,

Jefferson County, Indiana. Prepared for Indiana-Kentucky Electric Corporation. June 16.

ATTACHMENT

Closure Plan. Clifty Creek Station. West Boiler Slag Pond Closure. Phases 2-4.

Stantec Consulting Services Inc. (2021)

OHIO VALLEY ELECTRIC CORPORATION INDIANA- KENTUCKY ELECTRIC CORPORATION

3932 U. S. Route 23 P.O. Box 468 Piketon, Ohio 45661 740-289-7200

WRITER'S DIRECT DIAL NO: (740) 897-7768

June 17, 2021

Ms. Kate Garvey
Office of Land Quality
Indiana Department of Environmental Management
Solid Waste Permits Section
100 N. Senate Avenue
MC 65-45 IGCN 1101
Indianapolis, IN 46204-2205

Dear Ms. Garvey:

Re: Indiana-Kentucky Electric Corporation

Clifty Creek Station West Boiler Slag Pond

Phases 2, 3 and 4 Closure Plan

In accordance with 329 IAC 10-3-1(9), the Indiana-Kentucky Electric Corporation (IKEC) is submitting for agency review the accompanying Closure Plan for the remaining Phases (2, 3 and 4) of Clifty Creek Station's West Boiler Slag Pond (WBSP). IKEC is committed to being a good steward of the environment and to satisfying our environmental compliance obligations. We recognize the importance of maintaining a close partnership with IDEM in this endeavor, and appreciate the opportunity to submit this plan for agency review. Note that while IKEC desires to work closely with IDEM, IKEC is not waiving any of the positions it identified in its May 28, 2021 letter to Steven Thill or those identified in its June 1, 2021 Petition for Review of the Approval of the Partial Closure Plan for IKEC's WBSP.

If you have any questions or comments please contact me at (740) 897-7768.

Sincerely,

Tim Full

Tim Fulk Engineer II

TLF:gsc

Attachments

Closure Plan

Clifty Creek Station
West Boiler Slag Pond Closure
Phases 2-4
Madison, Jefferson County,
Indiana

Indiana-Kentucky Electric Corporation 3932 U.S. Route 23 Piketon, Ohio 45661

June 16, 2021

Closure Plan

West Boiler Slag Pond Closure Phases 2-4 Clifty Creek Station Madison, Jefferson County, Indiana

Table of Contents

Section			Page No	
1.	Obje	ective	1	
2.	Desc	ription of the CCR Unit	2	
	2.1.	Impoundment Structure	2	
	2.2.	Primary Spillway	3	
	2.3.	WBSP Location		
	2.4.	Available Geotechnical Data	4	
3.	Regulatory Overview6			
	3.1.	Regulatory Framework for Design	6	
	3.2.	Description of Closure Plan - 257.102(b)(1)(i)	6	
	3.3.	Closure in Place - 257.102(b)(1)(iii)	7	
	3.4.	Closure Performance Standards - 257.102(d)(1)	8	
		3.4.1. Section 257.102(d)(1)(i),(ii),(iii)		
		3.4.2. Section 257.102(d)(1)(iv)		
		3.4.3. Section 257.102(d)(1)(v)		
	3.5.	Draining and Stabilizing the Surface Impoundment		
		3.5.1. Section 257.102(d)(2)(i)	9	
		3.5.2. Section 257.102(d)(2)(ii)		
	3.6.	Final Cover System - 257.102(d)(3)		
	3.7.	Estimate of Maximum CCR Volume - 257.102(b)(1)(iv)		
	3.8.	Estimate of Largest Area of CCR Requiring Cover -		
		257.102(b)(1)(v)	10	
	3.9.	Closure Schedule - 257.102(b)(1)(vi)	10	
4.	Gene	eral Considerations	11	
5.	Closi	ure Plan Scope of Work	11	
	5.1.	Phase 2		
	5.2.	Phase 3		
	5.3.	Phase 4	12	
	5.4.	Stormwater Construction Permit		
	5.5.	Construction Quality Assurance		
	5.6.	Closure Documentation		
6.	Post-Closure Plan13			
7.	Refe	rences	13	

Table of Contents

(Continued)

Section Page No. **List of Figures** Figure 1 Aerial View of Clifty Creek Station List of Tables Water Wells Within a Half-Mile Offset Table 1 Table 2 Proposed Closure Schedule **List of Appendices** Appendix A Acronyms and Abbreviations Appendix B As-Built Design Drawings Appendix C Boundary Survey Appendix D Location Figures (Water Wells and Vicinity Maps) Appendix E Geotechnical Data Appendix F Stability Analysis Appendix G WBSP Phases 2-4 Permit Drawings Appendix H Ditch Sizing Calculations Appendix I Final Cover Soil Loss

Appendix J WBSP Phases 2-4 Quality Management Plan

Appendix L Closure and Post-Closure Cost Estimate

Appendix K Post-Closure Plan

Closure Plan

West Boiler Slag Pond Closure Phases 2-4 Clifty Creek Station Madison, Jefferson County, Indiana

1. Objective

Indiana-Kentucky Electric Corporation (IKEC) is submitting this Closure Plan for the Clifty Creek Station's West Boiler Slag Pond (WBSP) to the Indiana Department of Environmental Management (IDEM) Office of Water Quality (OWQ) with copies to the Office of Land Quality (OLQ), Waste Section. IKEC requests OWQ coordinate its review and comments with OLQ in a timely manner that facilitates adherence to the proposed schedule to close Phases 2-4 of the WBSP at the Clifty Creek Station.

The WBSP is an active settling facility and manages over 500 acres of stormwater and process flows from the station. The applicable National Pollution Discharge Elimination System (NPDES) Permit No. is IN0001759. IKEC previously submitted a Closure Plan for Phase 1 of the WBSP, which included regrading, capping, and closure of an inactive portion of the WBSP under the requirements of 40 CFR 257.102 of the U.S. Environmental Protection Agency's (USEPA's) Disposal of Coal Combustion Residuals (CCR) from Electric Utilities rule (EPA Final CCR Rule, 2015). The Phase 1 area lies within the WBSP clay dike, is at capacity, and has previously been repurposed as a laydown area for the station. The Phase 1 closure plan was submitted to IDEM in February 2020 and was deemed complete on October 23, 2020. The public involvement period is complete.

This closure plan details the three subsequent closure phases for the WBSP. Their design will be defined by the USEPA's EPA Final CCR Rule and the final rule amending 40 CFR 423, the Effluent Limitations, Guidelines, and Standards for the Steam Electric Power Generating Point Source Category (ELG Postponement Rule), which is addressed to modify operations at the Clifty Creek Station. Phases 2 and 3 will include design and construction of concrete CCR settling tanks and a Low Volume Waste Treatment System (LVWTS) to manage stormwater, plant process water (e.g., coal yard sumps, boiler room sumps, precipitator sumps), and landfill leachate. Phase 3 also includes construction of a new NPDES outfall. The existing NPDES permit and the authorization to discharge, as amended, from the WBSP's Outfall 002 expires on April 30, 2022 (IDEM, 2018). Construction of Phase 4 will then be initiated to close the remainder of the surface impoundment. Phase 4 includes subphases defined by the method of closure. Phase 4A will be completed by closure in place, i.e., final cover and geosynthetic cap placement. Phase 4B will be completed as closure-by-removal of material in accordance with this closure plan.

Appendix A is a list of acronyms and abbreviations.

2. Description of the CCR Unit

The Clifty Creek Station is located on the north bank of the Ohio River west of Madison, Indiana. It consists of six coal-fired electric generating units, each nominally rated at 217 megawatts. The station began producing electricity in 1955 to support the Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant located near Piketon, Ohio. The WBSP is located immediately west of the station and south of Clifty Hollow Road. It was built concurrent to station construction to store sluiced CCRs. Figure 1 shows the location of the Clifty Creek Station and a general overview map of the site, including the locations of the WBSP and supporting appurtenances.

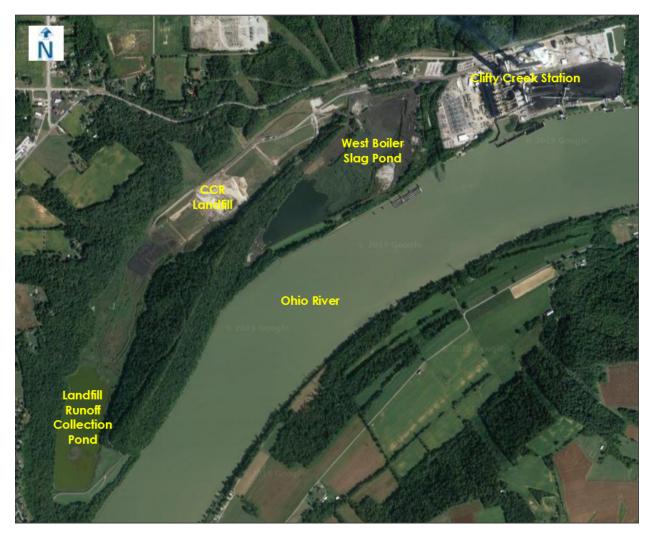


Figure 1- Aerial View of Clifty Creek Station

2.1. Impoundment Structure

The WBSP embankment is approximately 2,500 feet long, encompassing an estimated 80 acres with about 35 acres of surface water. The top of the dike is at an elevation of approximately 475 feet. The dike varies in height above the adjacent plant grades with

a maximum height of approximately 41 feet. FEMA (2015) Flood Insurance Study No. 18077CV000A shows that the flood stages of the Ohio River at the WBSP are approximately 463 feet and 468 feet for the 1 and 0.2 percent annual chance of flooding, respectively.

According to as-built design drawings 16-3002-5, 16-3002A-3, and 16-3033-1, the crest of the dam is 20 feet wide, the upstream slopes are 1.5H:1V (horizontal slope: vertical slope), and the downstream slopes are 2.5H:1V. The exterior toe of the dike is shown as elevation 433.0 feet with an exterior slope bench at 445.5 feet (AEPSC, 2016; Appendix B). The exterior WBSP slopes are grass covered.

2.2. Primary Spillway

The WBSP's primary spillway is a 30-foot tall reinforced concrete decant-type overflow structure built 70 feet east of the southwestern abutment. The intake shaft is rectangular with a 3.25-foot by 3.25-foot interior cross section (GZA, 2009). The top of the structure is approximately elevation 458 feet (AEPSC, 2015). A 36-inch extra strength reinforced concrete pipe connects to the decant structure at elevation 433.0 feet and discharges 300 feet downstream to the Ohio River (GZA, 2009).

Flows from the WBSP are currently permitted to be discharged through Outfall 002 to the Ohio River under modified NPDES Permit No. IN0001759 effective May 1, 2018, which is administered by IDEM. The existing NPDES permit and the authorization to discharge, as amended, from the WBSP's Outfall 002 expires on April 30, 2022 (IDEM, 2018).

2.3. WBSP Location

The Clifty Creek Station is in Jefferson County, Madison Township, Indiana in Township 3N, Range 10E, Section 5. The proposed four phases of closure and the post closure plan include approximately 89.6 acres. A legal description of the facility boundary is included in Appendix C.

In Appendix D, Figures 2 and 3 reflect a half-mile offset from the WBSP's waste boundary with regional water wells identified in the Indiana Department of Natural Resources (IDNR), Division of Water Well Record Database (IDNR, 2019). Figure 2 shows a plan view of the WBSP overlain on a November 2017 ESRI aerial. Figure 3 reflects the same data shown on a portion of the 7½-minute USGS topographic quadrangle map for Madison West (2019).

Six wells are shown within the half-mile offset. Available IDNR well information is provided in Appendix D. Three are a significant withdraw well permit group (registration number 01356) owned by IKEC and located upgradient of the WBSP. Two (Source ID 1 and 2A) provide water to the Clifty Creek Station. The third (Source ID 3) was abandoned in 2012 by Reynolds, Inc.

Logs for two more wells are available with UTM coordinates provided. Drilled in 1957, Wells 220019 and 22024 are owned by IKEC. Both encountered gravel and sand at depths of 58 and 60 feet, respectively. Well 22019 terminated at a bedrock depth of 130

feet. The wells were field located in 1966 and 1967. All IKEC wells are located upgradient of the WBSP.

The sixth well (registration number 219344) is owned by the State of Indiana, Clifty Falls Park and is also located upgradient of the WBSP. Completed in 1952, no UTM coordinates were provided. Comments in the IDNR file stated that drilling could not be verified. The location is estimated by township/range/section, quarter section, and county within the IDNR database and is assumed to be upgradient of the WBSP.

Well Record Completion Location Status Type Depth Reference (feet) Date No. Drilled to Field located (1966); UTM Inactive 220019 Bedrock 130 10/9/1957 provided Field located (1967); UTM Unconsolidated Inactive 220024 provided 83 10/23/1957 Significant UTM provided Active 01356 (1) Withdraw 122 12/25/1984 Significant UTM provided Active Withdraw 01356 (2A) 116 12/25/1984 Significant General UTM provided Abandoned 01356 (3) Withdraw 83 12/25/1984 No UTM provided, NW 1/4 of NW 1/4 Not present at 219344 7/20/1952 adj. to Ohio River below park. location shown

Table 1 - Water Wells Within a Half-Mile Offset

2.4. Available Geotechnical Data

Geotechnical data is available from six field explorations at the WBSP. A plan view of the borings and logs are provided in Appendix E. Appendix F contains a slope stability analysis for the WBSP Ph. 2-4 closure.

American Gas & Electric Service Corp. (1953)

The 1953 as-built design drawings include geotechnical borings within the Cinder Storage Area, now called the WBSP. The drawings show the embankment dimensions, generalized original ground topography, and geotechnical boring logs used as the basis of design.

The as-built base of the WBSP is 433.0 feet. Borings 3 and 4 show sandy brown clay at this elevation. Construction records reflect controlled compaction techniques using local material to reach the base grades. Borings 1 through 4 noted a silty grey clay with some sand to elevations of 401.0 feet (Boring 3) and 413.8 feet (Boring 4). In Borings 1 and 2, the sandy grey silt persists to 384.0 feet.

Stantec (2016)

Stantec performed two geotechnical field explorations to support the safety factor demonstration under the CCR Rule. Six borings were advanced along the crest and the downstream toe of the WBSP embankment dike in 2009/2010 with a site visit in 2015 to confirm field conditions. Laboratory testing was performed to confirm field classifications (natural moisture content, hydrometer analyses, Atterberg limits), estimate shear strength

(consolidated-undrained triaxial compression testing), and permeability. Results from the explorations indicate that the dikes were constructed of lean clay with sand. A well-graded gravel was encountered in Boring B-2 at elevation 392.5 feet and in Boring B-4 at 372.5 feet. The bedrock beneath the foundation soils is weathered gray shale.

AGES (2016)

Applied Geology and Environmental Science (AGES), Inc. was contracted by IKEC to identify upgrades in the groundwater monitoring program of the WBSP necessary for compliance with the CCR Rule. In 2015, two soil borings were advanced to supplement the existing subsurface geology information for the WBSP. Ten monitoring wells were then installed using a sonic drill rig, three upgradient and seven downgradient. Excerpts from AGES (2018) are included in Appendix E. This includes a well summary table, a generalized geologic cross section, groundwater flow maps for four sampling periods, and sample/well construction logs.

D. W. Kozera (2019)

A field exploration was performed in 2019 to support design and construction of a material handling pad within the proposed Phase 1 closure footprint. Six borings were advanced to a depth of 30 feet below existing grade along the southeastern embankment dike of the WBSP. The logs described the material as manmade fill, consisting of boiler slag (silty sand with gravel) or lean clay. A plan view and boring logs for this exploration are included in Appendix E.

Geotechnology (2020)

A field exploration was performed in 2020 to support design and construction of the Phase 2 closure area. Eight borings were advanced to depths ranging from 16 of 48 feet below existing grade. Seven cone penetrometer test (CPT) soundings were pushed from 4 to 36 feet below existing grade. The logs described the material as manmade fill, consisting of sand, gravel, and clay; boiler slag (coarse sand); lean clay, or shale and limestone bedrock. A plan view and boring logs for this exploration are included in Appendix E.

Stantec (2021)

Stantec conducted a field exploration in 2021 to support design and construction of the Phase 1through 4 closure of the WBSP. Seven geotechnical borings were advanced to depths ranging from 20 to 52 feet below existing grade. The logs described the material as manmade fill, consisting of sand, gravel, and clay; boiler slag (coarse sand); lean clay, gravel, or shale bedrock. Laboratory testing of samples collected during this exploration is ongoing at the time of this report. A plan view and boring logs for this exploration are included in Appendix E.

3. Regulatory Overview

3.1. Regulatory Framework for Design

The United States EPA Final CCR Rule defines the criteria for conducting the closure of CCR units under 40 CFR 257.102.

Per the IDEM CCR Fact Sheet, Indiana coal ash surface impoundments that are subject to an NPDES permit are not regulated under IDEM's solid waste program (IDEM 2021). Once the NPDES permit is terminated, the final disposal of solid waste in the surface impoundment is subject to the closure requirements under 329 Indiana Administrative Code (IAC) 10-9-1(9)(b) and (c), which incorporates portions of the CCR Rule by reference.

This submittal is an amendment to a written closure plan (40 CFR 257.102(b)(3)) describing closure in place (40 CFR 257.102(d)) for the second, third, and fourth phases of the WBSP.

Below is a general summary of how the WBSP will be closed. The permit-level Phase 2-4 drawings are included in Appendix G. Ditch sizing calculations associated with the permit-level design for Phases 2-4 are included in Appendix H.

3.2. Description of Closure Plan - 257.102(b)(1)(i)

[A narrative description of how the CCR unit will be closed in accordance with this section.]

The WBSP is an active settling facility, managing over 500 acres of stormwater and process flows from the station. The intent is to consolidate CCR materials within the WBSP where possible and close the facility in place in accordance with the requirements found in the CCR Rule. The closure will consist of design and construction of concrete CCR settling tanks, a Low Volume Waste Treatment System (LVWTS) consisting of two lined ponds to manage stormwater, process flows from the plant and leachate from the CCR landfill (Phases 2 and 3). Construction of Phase 4 will then be initiated to close the remainder of the surface impoundment through construction of an engineered cap and closure by consolidation.

IDEM's OLQ has requested that the WBSP be closed in accordance with Type I restricted waste site (RWS) standards. Under 329 IAC 10-30-2, final cover must have:

- A maximum projected erosion rate of five tons per acre per year
- A final compacted cover of six inches of topsoil plus a minimum depth of compacted clay of 30 inches:
- Slopes not less than two percent nor greater than 33 percent.

Appendix I includes the final cover soil loss calculations. The final cover consists of a 30-inch cover material layer and six inches of earthen material capable of growing and sustaining native vegetative growth. A geosynthetic membrane liner and geocomposite drainage layer is included below the cover material. The capped surface will be graded

to promote surface water runoff, and then seeded and mulched to promote growth of the vegetative cover.

3.3. Closure in Place - 257.102(b)(1)(iii)

[If closure of the CCR unit will be accomplished by leaving the CCR in place, a description of the final cover system, designed in accordance with paragraph (d) of this section, and the methods and procedures to be used to install the final cover.]

Prior to installing the final cover system for each of the phases, the CCR unit will be drained of free water and the material within the unit will be stabilized and graded to provide a stable and suitable subgrade upon which to construct the cap. All water will be managed in the remaining open portion of the pond and discharged through the existing NPDES outfall for Phases 2 and 3. Upon completion of the LVWTS and final cover system in Phase 2 and 3, stormwater and treated process flows will be managed through a new NPDES outfall. Construction of Phase 4 will then begin construction to close the remainder of the surface impoundment through construction of an engineered cap and closure by consolidation. The existing CCRs will then be reshaped to provide a firm and stable subgrade and to achieve positive drainage for stormwater runoff.

The final closure system will consist of the following layers (from bottom to top):

- 40-mil LLDPE Flexible Membrane Liner
- Geocomposite Drainage Layer
- 30-inches of cover material
- 6-inches of vegetative cover capable of growing and sustaining native vegetative growth

The flexible geomembrane liner (FML) will have a permeability that is less than or equal to the permeability of the natural subsoils, and is no greater than 1x10⁻⁵ cm/sec. The capped surface will be graded to promote surface water runoff, and then seeded and mulched to promote growth of the vegetative cover.

As part of the LVWTS construction, the primary and secondary basins will be constructed with engineered liner systems. The primary basin liner system shall consist of (from bottom to top):

- Geosynthetic Clay Liner
- 60-mil HDPE Flexible Membrane Liner
- Geotextile Fabric
- 12-inches of fill material
- Concrete work surface

The secondary basin liner system shall consist of:

- Geosynthetic Clay Liner
- 60-mil HDPE Flexible Membrane Liner
- Geotextile Fabric
- 6 inches of fill material
- 18-inches of riprap

For both the primary and secondary basin, the liner system on the side slopes shall consist of:

- Geosynthetic Clay Liner
- 60-mil HDPE Flexible Membrane Liner
- Geotextile Fabric
- 6 inches of fill material
- 18-inches of riprap

Piezometers will be installed within Phases 2-4 to monitor water levels for the closed footprint. Additional measures may be necessary to support subgrade conditioning and construction of the proposed liner and final cover systems. All pumped water will be returned to the remaining open portion of the pond to be discharged through the existing NPDES outfall.

Stormwater drainage improvements will be implemented during the final closure activities with minor grading of existing channels and construction of new channels to improve drainage of the closed pond. The final cover slope will be a minimum of two percent (2%) and will convey surface water to an NPDES-permitted outfall. Permanent stormwater ditch slopes may vary and will be sized to adequately convey anticipated design storm events.

3.4. Closure Performance Standards - 257.102(d)(1)

3.4.1. Section 257.102(d)(1)(i),(ii),(iii)

[(i)Control, minimize or eliminate, to the maximum extent feasible, post-closure infiltration of liquids into the waste and releases of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere; (ii) Preclude the probability of future impoundment of water, sediment, or slurry; (iii) Include measures that provide for major slope stability to prevent the sloughing or movement of the final cover system during the closure and post-closure care period]

Post-closure infiltration of liquids into the waste will be controlled through the design of the site grading plan, construction of an engineered cap system, and establishment of a stormwater management system in accordance with engineering practices. The intent of such a plan is to limit the infiltration of precipitation, cover, control, and prevent the releases of CCRs, and promote positive drainage. CCR materials will be placed and compacted in a manner to minimize settling and subsidence that could affect the integrity of the final cover system prior to cap placement.

Installation and quality control testing of the geosynthetics will be performed as specified by the manufacturer.

Stability analyses were performed as part of the EPA Final CCR Rule's design criteria demonstrations (Stantec, 2016). Additional analyses have been performed to support the proposed conveyor system at the southeastern abutment of the pond and to evaluate the perimeter dike stability to support the design grading of the Phases 2 through 4 WBSP closure area grading. These analyses are included in Appendix E.

3.4.2. Section 257.102(d)(1)(iv)

[Minimize the need for further maintenance of the CCR unit.]

The final configuration of the impoundment will be vegetated to mitigate erosion. Maintenance of the final cover system will include regularly scheduled inspections to monitor post-closure conditions and preventative maintenance.

3.4.3. Section 257.102(d)(1)(v)

[Be completed in the shortest amount of time consistent with recognized and generally accepted good engineering practices.]

The impoundment will be closed in a time frame consistent with recognized and generally accepted good engineering practices. Refer to the schedule below for key milestone dates.

3.5. Draining and Stabilizing the Surface Impoundment

[The owner or operator of a CCR surface impoundment or any lateral expansion of a CCR surface impoundment must meet the requirements of paragraph (d)(2)(i) and (ii) of this section prior to installing the final cover system required under paragraph (d)(3) of this section.]

3.5.1. Section 257.102(d)(2)(i)

[Free liquids must be eliminated by removing liquid wastes or solidifying the remaining wastes and waste residue.]

Free liquid will be removed as part of the final closure of the CCR unit and discharged in a manner consistent with the facility's NPDES permit.

3.5.2. Section 257.102(d)(2)(ii)

[Remaining waste must be stabilized sufficient to support the final cover system.]

The remaining wastes that constitute the subgrade of the final cover system will be stabilized by removal of free liquids and providing bridging material as necessary.

3.6. Final Cover System - 257.102(d)(3)

[If a CCR unit is closed by leaving the CCR in place, the owner or operator must install a final cover system that is designed to minimize infiltration and erosion, and at a minimum, meets the requirements of paragraph (d)(3)(i) of this section, or the requirements of the alternative final cover system specified in paragraph (d)(3)(ii) of this section.

The final cover system must be designed and constructed to meet the criteria in paragraphs (d)(3)(i)(A) through (D) of this section. The design of the final cover system must be included in the written closure plan.]

Refer to Section 3.3 for details regarding the final cover system

3.7. Estimate of Maximum CCR Volume - 257.102(b)(1)(iv)

[An estimate of the maximum inventory of CCR ever on-site over the active life of the CCR unit.]

The estimated maximum amount of CCR to ever be on-site for the WBSP is approximately 3,600 acre-feet.

3.8. Estimate of Largest Area of CCR Requiring Cover - 257.102(b)(1)(v)

[An estimate of the largest area of CCR unit ever requiring a final cover.]

The proposed final cover system area for Phases 2-4 is approximately 60 acres.

3.9. Closure Schedule - 257.102(b)(1)(vi)

[A schedule for collecting all activities necessary to satisfy the closure criteria in the section, including an estimate of the year in which all closure activities for the CCR unit will be completed. The schedule should provide sufficient information to describe the steps that will be taken to close the CCR unit, including identification of major milestones such as coordinating with and obtaining necessary approvals and permits from other agencies, the dewatering and stabilization of the CCR surface impoundment closure, or installation of the final cover system, and the estimated timeframes to complete each step or phase of the CCR unit closure.]

Phases 2-4 will begin final design and construction upon approval of this permit application. The intent is to complete construction of the Phase 2 concrete CCR settling tanks and Phase 3 Low Volume Waste Treatment System (LVWTS) by end of 2023.

Subsequent Phase 4 construction to close the remainder of the surface impoundment through construction of an engineered cap will be completed within five years of cessation of flows in accordance with the CCR Rule or when technically feasible.

USEPA (2020) has defined a closure schedule process for existing CCR surface impoundments that are considered "unlined" under the CCR Rule. Table 2 provides an approximate closure schedule to meet the required regulation.

Table 2 - Proposed Closure Schedule

Task	Completion Date	
Phase 1 construction	End of 2022	
Phase 2 and Phase 3 construction	End of 2023	
Phase 4 construction	Within 5 years of cessation of flows or	
	when technically feasible	

4. General Considerations

General considerations for the WBSP closure are presented in the following sections. Subsequent to final closure, IKEC will address environmental concerns and permit obligations that are regulated by other IDEM divisions during the closure process. All demonstrations reflecting the WBSP's compliance with the EPA Final CCR Rule in terms of location restrictions, design criteria, operating criteria, and groundwater monitoring are available on IKEC's public website, www.ovec.com/CCRClifty.php.

Phase 2 includes the construction of a series of concrete settling tanks to manage operational boiler slag, which will serve as part of the facility's ELG compliance strategy. Phase 3 includes the construction of two geomembrane-lined ponds to treat on-going plant process flows and construction of a new NDPES outfall. Phase 4 consolidates and closes the last of the WBSP active surface impoundment.

5. Closure Plan Scope of Work

Phases 2-4 closure of the WBSP will require continued modification of the current pond system. The following general tasks are anticipated as part of the closure process.

5.1. Phase 2

Phase 2 will consist of the portion of the final cover supporting boiler slag settling tanks, pipes, and ancillary facilities for the operational changes to the process flows. It will be located at the northern end of the WBSP, located closest to the station. Appendix G provides the proposed Phase 2-4 permit drawings, including the boiler slag settling tanks, pipes, and ancillary facilities and associated details, as well as the portion of the final cover supporting these features.

5.2. Phase 3

A significant portion of the waste water flow from the station is planned to be treated with a separate treatment system. The system for handling this flow is termed the Low Volume Waste Treatment System and is not included in the ELG requirements. The Phase 3 area and construction activities will include two lined basins to collect this flow. The Phase 3 design of this system was based on flow rates and minimum required retention times.

5.3. Phase 4

Throughout Phases 2 and 3, process flows will continue to be discharged through Outfall 002 to the Ohio River under modified NPDES Permit No. IN0001759 effective May 1, 2018, which is administered by IDEM. The existing NPDES permit and the authorization to discharge, as amended, from the WBSP's Outfall 002 expires on April 30, 2022 (IDEM, 2018). Construction of Phase 4 will then be initiated to close the remainder of the surface impoundment. Phase 4 consists of two subphases defined by the closure construction anticipated within those phases.

As part of Phase 4A, an engineered cap system will be constructed over the Phase 2-4 closure area. Appendix G provides the proposed Phase 2-4 permit drawings, including the cap area and details.

As part of Phase 4B, the remaining portion of the impoundment will be closed by consolidation (closure by removal). Existing CCR material will be removed in accordance with the requirements of the Quality Management Plan (QMP). Clean fill will be imported to the site to promote positive drainage of stormwater to the existing outfall. A minimum of six inches of vegetative cover will be placed over the fill material capable of growing and sustaining native vegetative growth.

The final cap system design will accommodate settling and subsidence so to preserve the cap system's integrity.

5.4. Stormwater Construction Permit

Since more than one acre will be disturbed during the pond closure activities, a Stormwater Notice of Intent (NOI) to discharge stormwater associated with construction activities will be submitted to IDEM OWQ. A Stormwater Pollution Prevention Plan (SWPPP) will be prepared and submitted as required by the NOI along with applicable permit fees. A Notice of Termination (NOT) to terminate the stormwater construction permit will be submitted upon completion of the pond closure.

5.5. Construction Quality Assurance

Construction quality assurance (CQA) activities are outlined in the attached Quality Management Plan (QMP). The QMP will be finalized as part of the detailed design and prior to construction of each phase of the WBSP closure. Construction observations will

be conducted and recorded to document the closure and CQA testing. Sections of the QMP will include:

- A. Purpose and Scope
- B. Responsibility and Authority
- C. Quality Control Activities
- D. Quality Assurance Activities
- E. Product Submittals and Material Testing
- F. Project Documentation

Appendix J includes a draft QMP. This is proposed as the basis for the final plan to maintain consistency on the site.

5.6. Closure Documentation

Upon completion of approved closure construction activities, a closure report will be prepared by an independent professional engineer registered in the State of Indiana to document the completed construction activities. The closure report will be submitted to IDEM OLQ and OWQ. The letter report will document the source of fill material, amount of fill material used, details regarding cap construction, and final cap elevations.

6. Post-Closure Plan

Post-closure care will be performed in accordance with the Post-closure Plan in Appendix K. The closed areas for Phases 2-4 will be included in the active groundwater monitoring program until the ultimate closure of the WBSP. Post-closure care for all phases will begin at that time.

Estimated Closure and Post-Closure costs are provided in Appendix L.

7. References

- American Electric Power Service Corporation. (2016). History of Construction. CFR 257.73(c)(1). West Boiler Slag Pond. Clifty Creek Plant. Madison, Indiana. October. Prepared for Indiana-Kentucky Electric Corporation. GERS-16-142. Columbus, Ohio.
- American Electric Power Service Corporation (AEPSC) (2015). 2015 Dam and Dike Inspection Report. GERS-15-018. Clifty Creek Plant. Madison, Indiana. October 5. Inspection Date: September 3, 2015. Revision 0.
- Applied Geology and Environmental Science, Inc. (2016), Revision 1.0 (2018). Coal Combustion Residuals Regulation (CCR) Monitoring Well Installation Report, Indiana-Kentucky Electric Corporation, Clifty Creek Station, Madison, Indiana.

- Indiana Department of Environmental Management (IDEM). Fact Sheet. Coal Combustion Residuals (Coal CCR). Office of Land Quality Permitting Branch. Factsheet_olq_permits_ccr. Accessed May 17, 2021. https://www.in.gov/idem/fact-sheets/#olq. CO0518L-1120.
- Environmental Protection Agency (2015). "Final Rule: Disposal of Coal Combustion Residuals from Electric Utilities." Federal Register, Vol. 80, No. 74, April 17.
- Federal Emergency Management Agency (FEMA) (2015). Flood Insurance Study. Jefferson County, Indiana and Incorporated Areas. Volume 1 of 1. Effective April 2. FIS No. 18077CV000A. Version No. 2.2.2.0.
- GZA GeoEnvironmental, Inc. (GZA) (2009). Task 3 Dam Assessment Report. Project #0-381. Clifty Creek Station. West Boiler Slag Pond. Madison, Indiana. September 14.
- Indiana Department of Environmental Management (IDEM). (2018). Letter from Jerry Dittmer, OWQ to J. Michael Brown, IKEC. Re: NPDES Permit No. IN0001759, Permit Modification. IKEC Clifty Creek Station. Madison, IN Jefferson County. April 10. VFC No. 82625441.
- Indiana-Kentucky Electric Corporation. www.ovec.com/CCRClifty.php
- Indiana-Kentucky Electric Corporation. (2016a). Closure Plan. CFR 257.102(b). West Boiler Slag Pond. Clifty Creek Station. Madison, Indiana. October.
- Indiana-Kentucky Electric Corporation. (2016b). Post-Closure Plan. CFR 257.104(d). West Boiler Slag Pond. Clifty Creek Station. Madison, Indiana. October.
- Stantec Consulting Services Inc. (2018). Placement Above the Uppermost Aquifer Demonstration. West Boiler Slag Pond. Clifty Creek Station. Madison, Indiana. Prepared for Indiana-Kentucky Electric Corporation. Piketon, Ohio. October 12.
- Stantec Consulting Services Inc. (2016). Report of CCR Rule Stability Analyses. AEP Clifty Creek Power Plant. Boiler Slag Pond Dam and Landfill Runoff Collection Pond. Madison, Jefferson County, Indiana. Prepared for American Electric Power, Columbus, Ohio. February 16.
- USEPA (2020). A Holistic Approach to Closure Part A: Deadline to Initiate Closure [RIN 2050-AH10; FRL-XXXX-XX-OLEM]. Pre-publication copy notice. November 4. EPA-HQ-OLEM-2019-0172.

APPENDIX A

Acronyms and Abbreviations

Acronyms and Abbreviations

AEPSC American Electric Power Service Corporation

AGES Applied Geology and Environmental Science, Inc.

CCR Coal Combustion Residuals

CFR Code of Federal Regulations

cm/sec centimeters per second

CQA Construction Quality Assurance

DOE Department of Energy

ELG Effluent Limitations, Guidelines

FML flexible membrane liner

H:V horizontal slope : vertical slope

IAC Indiana Administrative Code

IDEM Indiana Department of Environmental Management

IDNR Indiana Department of Natural Resources

IKEC Indiana-Kentucky Electric Corporation

LVWTS Low-Volume Waste Treatment System

mW megawatts

No. number

NOI Notice of Intent

NOT Notice of Termination

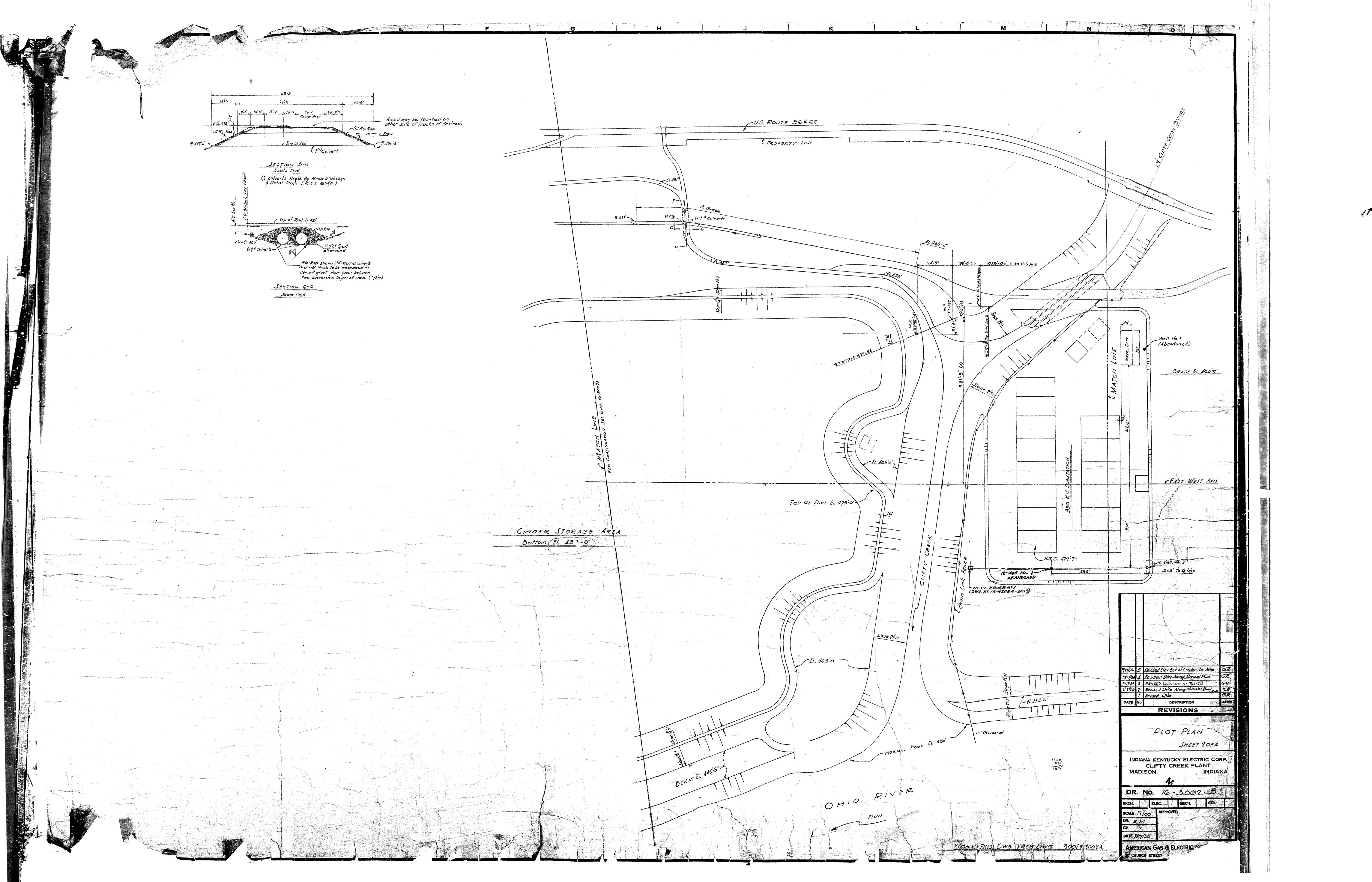
NPDES National Pollutant Discharge Elimination System

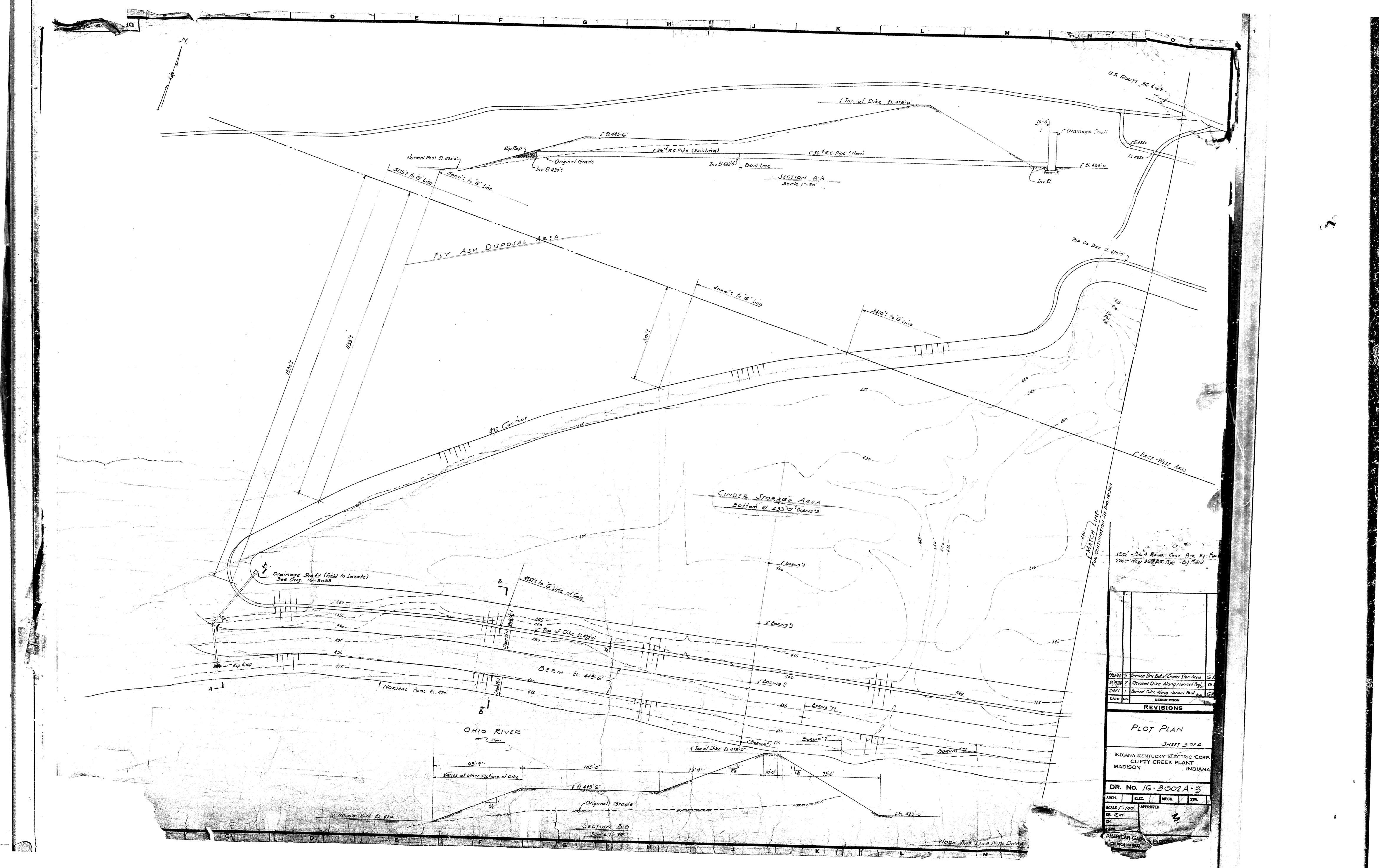
OLQ Office of Land Quality

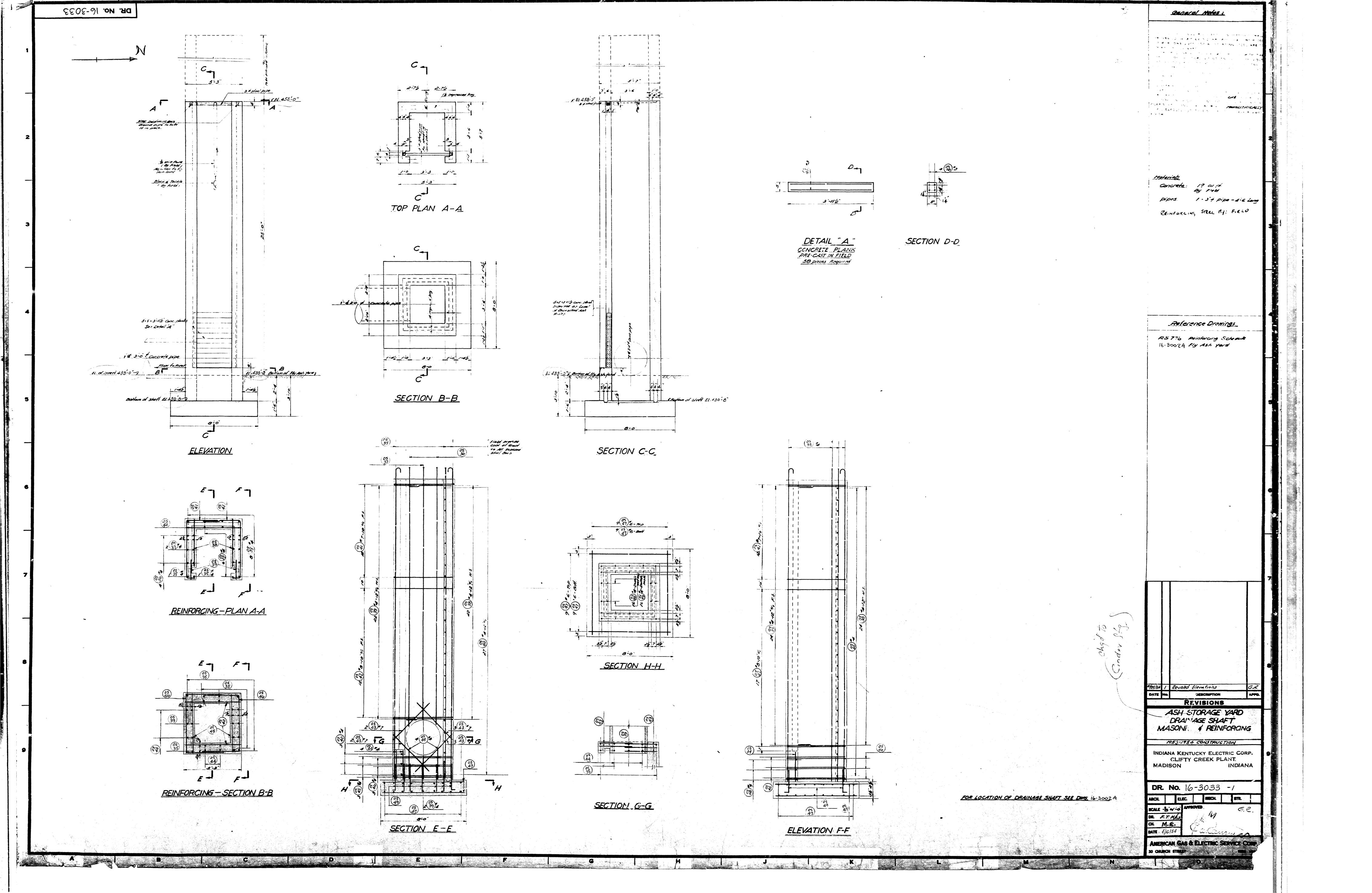
OWQ Office of Water Quality

QMP Quality Management Plan

SWPPP Stormwater Pollution Prevention Plan

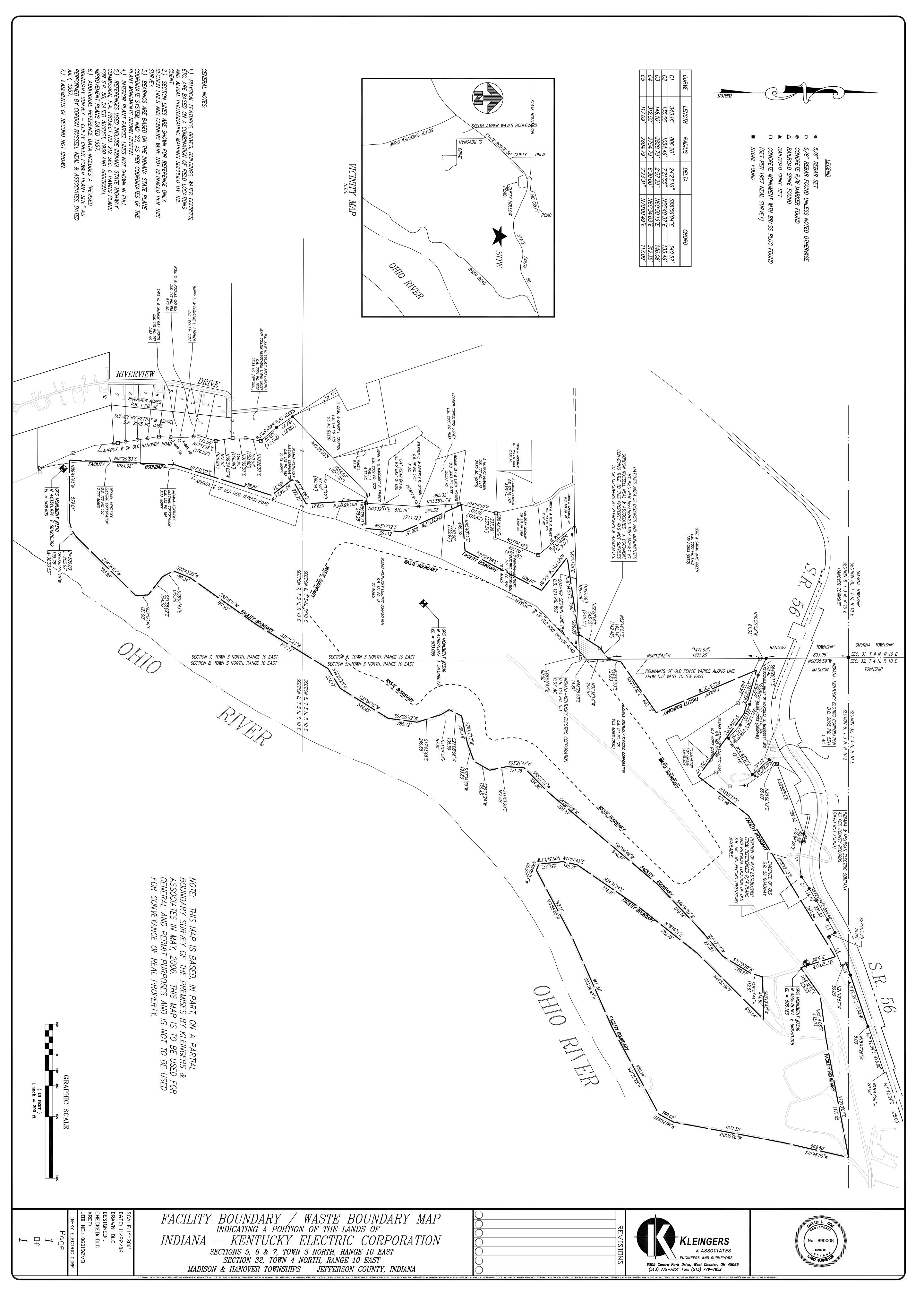

UMA uppermost aquifer


USEPA United States Environmental Protection Agency


WBSP West Boiler Slag Pond

APPENDIX B

As-Built Design Drawings



APPENDIX C

Boundary Survey

November 22, 2006

LEGAL DESCRIPTION INDIANA – KENTUCKY ELECTRIC CORPORATION FACILITY BOUNARY 357.74 ACRES

Situated in Section 5, Town 3 North, Range 10 East, Madison Township and in Sections 6 and 7, Town 3 North, Range 10 East, Hanover Township, Jefferson County, Indiana and being part of the lands conveyed to Indiana-Kentucky Electric Corporation and being more particularly described as follows:

Commencing at a stone found at the northwest corner of said Section 5 and the northeast corner of said Section 6;

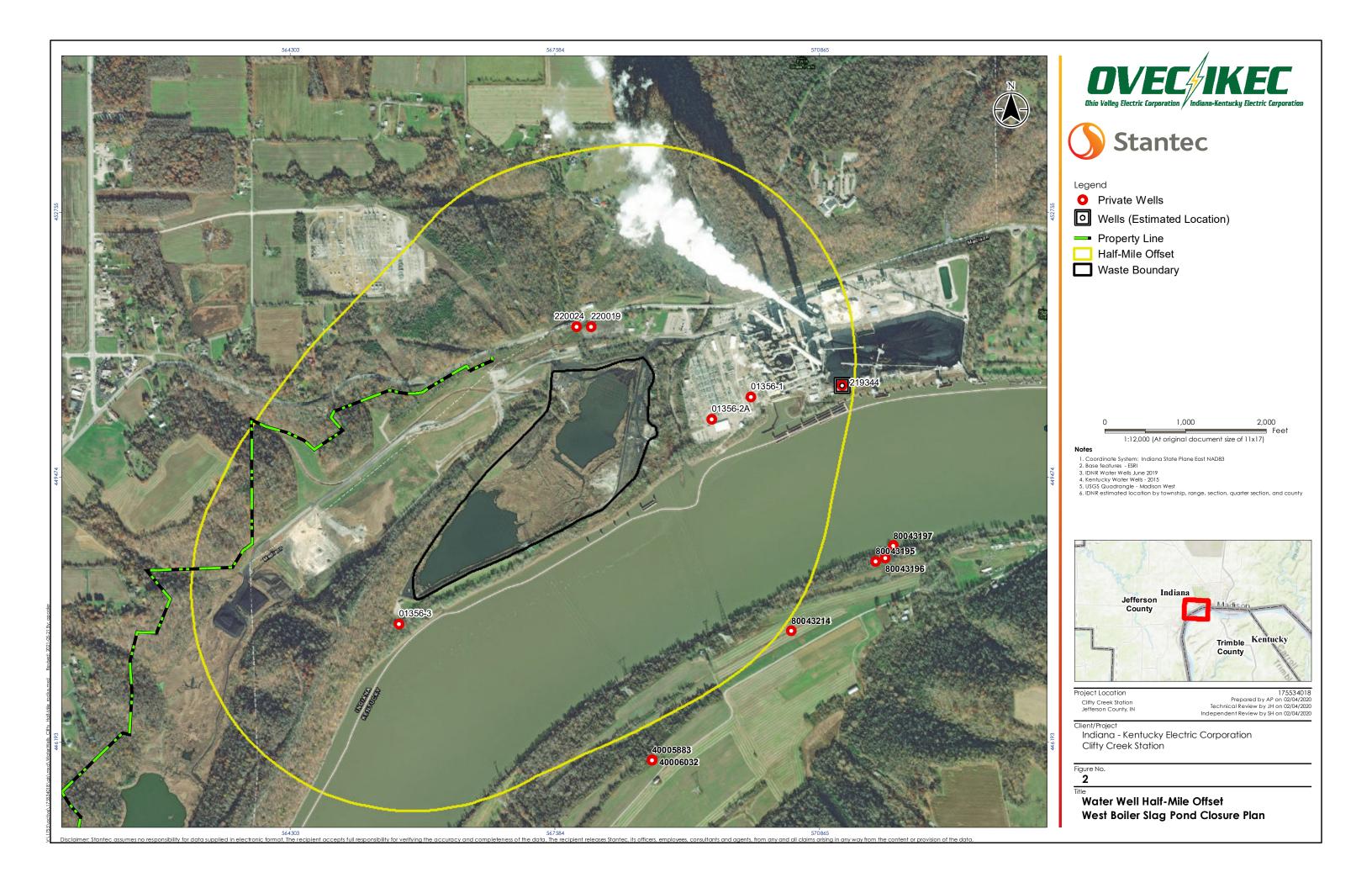
Thence along the westerly line of Section 5 and the easterly line of Section 6, also being the line between Madison and Hanover Townships, S00°35'59"E a distance of 803.96 feet;

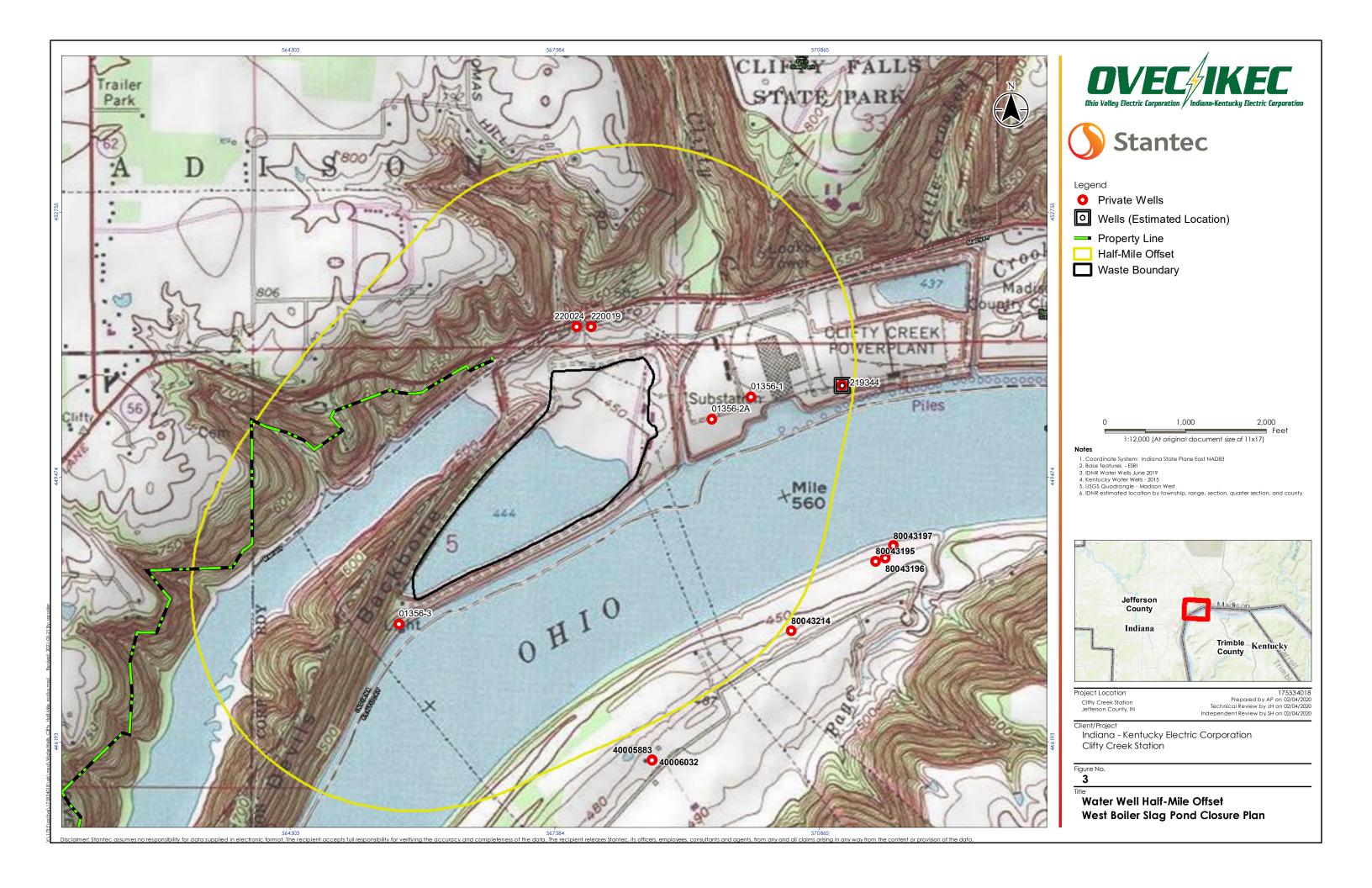
Thence continuing along said section line, S00°12'42"E a distance of 1471.25 feet to a concrete monument found at the true Point of Beginning;

Thence along the lines or through the lands of the Indiana-Kentucky Electric Corporation the following sixty five (65) courses:

- 1) N12°01'53"E a distance of 121.63 feet;
- 2) N55°13'42"E a distance of 602.73 feet;
- 3) N22°57'31"W a distance of 1060.09 feet;
- 4) S74°02'58"E a distance of 440.98 feet;
- 5) S53°54'53"E a distance of 755.90 feet:
- 6) N38°01'17"E a distance of 621.98 feet:
- 7) N58°22'33"E a distance of 1611.56 feet;
- 8) S17°32'00"E a distance of 355.02 feet;
- 9) N54°42'01"E a distance of 328.58 feet;
- 10) N82°14'06"E a distance of 433.03 feet;
- 11) N79°13'01"E a distance of 1171.05 feet;
- 12) S12°46'08"W a distance of 669.60 feet;
- 13) S10°35'06"W a distance of 1071.55 feet;
- 14) S28°32'06"W a distance of 160.62 feet;
- 15) S61°35'28"W a distance of 950.19 feet;
- 16) S66°04'42"W a distance of 966.51 feet;
- 17) S61°55'05"W a distance of 742.11 feet:
- 18) N69°05'23"W a distance of 65.57 feet;
- 19) N05°34'13"W a distance of 234.77 feet;

- 20) N11°51'43"E a distance of 142.75 feet;
- 21) N34°31'34"E a distance of 734.91 feet;
- 22) N38°16'11"E a distance of 722.75 feet;
- 23) N44°51'56"E a distance of 909.64 feet;
- 24) S88°19'43"W a distance of 414.62 feet;
- 25) S16°39'44"W a distance of 119.61 feet;
- 26) S31°25'10"W a distance of 320.27 feet;
- 27) S50°17'27"W a distance of 297.64 feet;
- 28) S46°38'57"W a distance of 649.14 feet;
- 29) S40°04'49"W a distance of 994.34 feet:
- 30) S40°00'06"W a distance of 395.79 feet;
- 31) S45°37'31"W a distance of 334.36 feet;
- 32) S03°21'47"W a distance of 171.75 feet;
- 33) S11°43'20"E a distance of 167.55 feet:
- 34) S29°18'24"W a distance of 175.45 feet;
- 35) \$70°04'39"W a distance of 193.60 feet;
- 36) S78°07'17"W a distance of 265.48 feet;
- 37) S27°08'06"W a distance of 135.59 feet;
- 38) \$31°49'39"E a distance of 87.81 feet;
- 39) S17°43'48"E a distance of 249.68 feet;
- 40) S07°38'52"W a distance of 285.72 feet;
- 41) S32°04'10"W a distance of 549.95 feet;
- 42) S58°20'25"W a distance of 224.17 feet;
- 43) S31°35'23"W a distance of 817.79 feet;
- 44) S35°16'11"W a distance of 787.93 feet;
- 45) S22°43'35"W a distance of 180.34 feet;
- 46) \$28°03'43"E a distance of 122.20 feet;
- 47) S51°58'02"E a distance of 224.52 feet;
- 48) \$03°07'06"E a distance of 121.90 feet;
- 49) S44°38'09"W a distance of 793.85 feet;
- 50) Along a curve to the right, an arc distance of 203.67 feet, said curve having a central angle of 38°53'53", a radius of 300.00 feet, and a chord bearing S65°45'49"W for 199.78 feet;
- 51) N89°41'43"W a distance of 579.01 feet;
- 52) N02°29'53"E a distance of 1024.08 feet;
- 53) N17°31'09"E a distance of 988.81 feet;
- 54) N37°14'24"W a distance of 255.34 feet;
- 55) N60°25'06"E a distance of 272.79 feet;
- 56) N03°45'09"W a distance of 579.81 feet;
- 57) N89°06'31"E a distance of 278.28 feet;
- 58) N05°17'12"E a distance of 353.12 feet;
- 59) N24°32'05"W a distance of 636.15 feet;
- 60) N85°40'11"E a distance of 449.52 feet; 61) N27°24'18"E a distance of 839.97 feet;
- 01)1127 2110 E a distance of 039.97 feet,
- 62) N52°17'25"W a distance of 406.99 feet;
- 63) N81°34'55"E a distance of 756.11 feet;
- 64) N32°20'14"E a distance of 245.12 feet;


65) N52°14'21"E a distance of 142.14 feet to the Point of Beginning, containing 357.74 acres, more or less.


Bearings are based on the Indiana State Plane Coordinate System, NAD '27 as per the coordinates of the plant monuments provided by others.

This description was prepared by Kleingers & Associates, Inc., under the direction of David L. Cox, Indiana Licensed Surveyor No. 890008 and is based on a partial survey of the subject property performed in April and May, 2006. This description is to be used for permit purposes only and is not for the conveyance of real property.

APPENDIX D

Location Figures

Significant Withdraw Wells within a Half-Mile Offset of the WBSP

			MWU							Source	Source	Capacity	Well	Depth	Diam		UTM	UTM		
	County	RegNo	Code	Facility	RegDate	USGS 24k Quad	Township	Range	Section	Code	ID	(GPM)	Log	(ft)	(in)	Aquifer	North	East	х	У
Significant	39	01356	EP	Indiana Kentucky Electric Corporation	12/26/84	Madison West, IN-KY	3N	10E	4	WELL	1	500		122	12	SG	4288550	637225	637221.5056	4288757.352
Withdraw	39	01356	EP	Indiana Kentucky Electric Corporation	12/26/84	Madison West, IN-KY	3N	10E	4	WELL	2A	500	383112	116	16	SG	4288465	637078	637074.5094	4288672.35
Well	39	01356	EP	Indiana Kentucky Electric Corporation	12/26/84	Madison West, IN-KY	3N	10E	4	WELL	3	500		83	6	SG	4287675	635900		

IDNR Water Well Viewer, DOW Database (accessed February 5, 2020)

Record of Water Well

Indiana Department of Natural Resources

Reference Number	Driving directions to well	Date completed
220019	WELL #2 2MLW OF MADISON INDIANA	Oat 00, 1057

220019		WELL #2 2MI W OF M	MADISON, INDIANA	Oct 09, 1957						
Owner- Contractor	Name		Address	Telephone						
Owner	INDIAN CO.	IA-KENTUCKY ELE.	MADISON, INDIANA							
Driller	COMPA		PO BOX 21266 LOUISVILLE, KENTUCKY							
Operator	A. BUR	GESS	License: null							
Construction D	Details	Tiere In decades	Deller - made de Calde Taul	D 6						
Well		Use: Industry Depth: 130.0	Drilling method: Cable Tool Pump setting depth:	Pump type Water qua	dity:					
Casing		Length: 100.0	Material:	Diameter:						
Screen		Length: 30.0	Material:	Diameter: 12.0 Slot size: #30						
Well Capacity	Test	Type of test:	Test rate: 732.0 gpm for		t rate: gpm for hrs.					
		Drawdown: 7.0 ft.	Static water level: 51.0	ft. Bailer I	Drawdown ft.					
Grouting Infor	mation	Material:	Depth: from to							
		Installation Method:	Nui	Number of bags used:						
Well Abandoni	ment	Sealing material:	Dep	Depth: from to						
		Installation Method:	Nui	mber of bags used:						
Administrative	•	County: JEFFERSON		Township: 4N Ra	9					
			of the SE of Section 32		Topo map: MADISON WEST, IN-KY					
		Grant Number:								
		Field located by: JUA		on: Jun 01, 1966						
		Courthouse location b	·	on:						
		Location accepted w/o	verification by:	on:						
		Subdivision name: Ft W of EL: 1000.0	Ft N of SL: 250.0	Lot number: Ft E of WL:	Ft S of NL:					
				Bedrock						
		Ground elevation: 500	Depth to bedrock: 130.0	elevation: 370.0	Aquifer elevation:					
		UTM Easting: 636614	.0	UTM Northing:	4288800.0					

Well Log	Тор	Bottom	Formation	
	0.0	48.0	MED	
	48.0	58.0	FN SANDY MUD	
	58.0	65.0	CRS GRAV	
	65.0	71.0	CRS GRAV	
	71.0	79.0	CRS GRAV	
	79.0	84.0	MED SAND	
	84.0	88.0	CRS SAND	
	88.0	92.0	CRS GRAV	

S&G

100.0

92.0

	100.0 104.0	104.0 109.0	GRAV FN GRAV	
	109.0	119.0	MED GRAV	
	119.0	130.0	MED GRAV	
	130.0		LIME	
Comments	MC370;			

Record of Water Well

Indiana Department of Natural Resources

Reference Number	Driving directions to well	Date completed
	AND MUCE ALADICON DIDIANA #1 (DECODE WELL) DECDE ATION O	

220024 2MI. W OF MADISON, INDIANA#1 (RESORT WELL) -RECREATION @ POWER PLANT

Oct 23, 1957

Owner- Contractor	Name	Address	Telephone
Owner	INDIANA-KENTUCKY ELE. CO	MADISON, INDIANA	
Driller	DIEHL PUMP & SUPPLY COMPANY	PO BOX 21266 LOUISVILLE, KENTUCKY	
Operator	A. BURGESS	License: null	

Construction Details

Well	Use: Industry	Drilling method: Cable Tool	Pump type:
	Depth: 82.75	Pump setting depth:	Water quality:
Casing	Length: 76.9	Material:	Diameter: 6.0

Screen Length: 6.0 Material: Diameter: 6.0 Slot size: #30

Well Capacity Test
Type of test:
Drawdown: ft.
Test rate: gpm for hrs.
Static water level: 27.0 ft.
BailTest rate: gpm for hrs.
Bailer Drawdown ft.

Grouting Information Material: Depth: from to

Installation Method: Number of bags used:

Well Abandonment Sealing material: Depth: from to

Installation Method: Number of bags used:

Administrative County: JEFFERSON Township: 4N Range: 10E

Section: SW of the SE of the SE of Section 32

Topo map: MADISON WEST,

IN-KY

Bedrock

Grant Number:

Field located by: JNA on: Jun 01, 1966

Courthouse location by: on:
Location accepted w/o verification by: on:

Subdivision name: Lot number:

Ft W of EL: 1000.0 Ft N of SL: 250.0 Ft E of WL: Ft S of NL:

Ground elevation: 500.0 Depth to bedrock: Aquifer elevation: 423.0

UTM Easting: 636560.0 **UTM Northing:** 4288800.0

Well Log	Тор	Bottom	Formation	
	0.0	57.0	MED	
	57.0	60.0	COMM BOX	
	60.0	62.0	LARGE GRAVEL	
	62.0	64.0	CRS SAND, LARGE GRAV	
	64.0	67.0	CRS SAND, LARGE GRAV	
	67.0	69.0	CRS GRAV	
	69.0	72.0	MED SAND, LARGE GRAV	
	72.0	77.0	CRS SAND, LARGE GRAV	

Comments MDM GRAY SAND-MUD, TRACE SOME GRAV, 57-60;

Record of Water Well

Indiana Department of Natural Resources

Reference Number Driving directions to well Date completed

219344 NW 1/4 OF NW 1/4 ADJ TO OHIO RIVER BELOW PARK Jul 20, 1952

Owner-Contractor Name Address Telephone

Owner ST OF IN CLIFTY FALLS PARK

Type of test:

Construction Details

Well Capacity Test

Casing

Comments

Well Use: Drilling method: Pump type:

Depth: Pump setting depth: Water quality: Length: Diameter:

Screen Length: Material: Diameter: Slot size:

Drawdown: ft. Static water level: ft. Bailer Drawdown ft.

Test rate: 14.0 gpm for hrs.

Grouting Information Material: Depth: from to

Installation Method: Number of bags used:

Well Abandonment Sealing material: Depth: from to

Installation Method: Number of bags used:

Administrative County: JEFFERSON Township: 3N Range: 10E

Section: of Section 4 Topo map: MADISON WEST,

IN-KY

BailTest rate: gpm for hrs.

Grant Number:

Field located by:

Courthouse location by:

Location accepted w/o verification by:

on:

Subdivision name: Lot number:

Ft W of EL: Ft N of SL: Ft E of WL: Ft S of NL:

Ground elevation: Depth to bedrock:

Bedrock elevation:

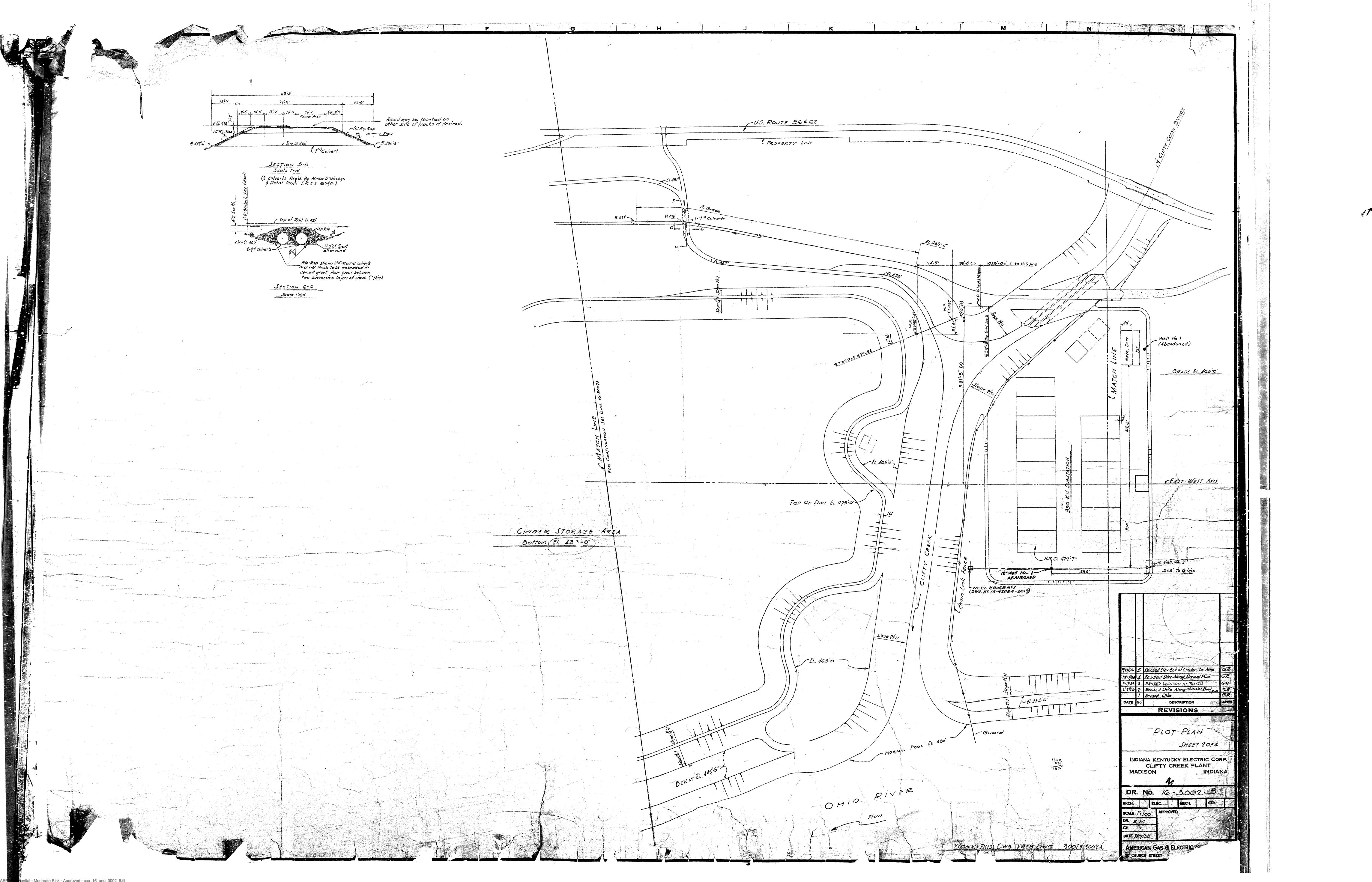
Aquifer elevation:

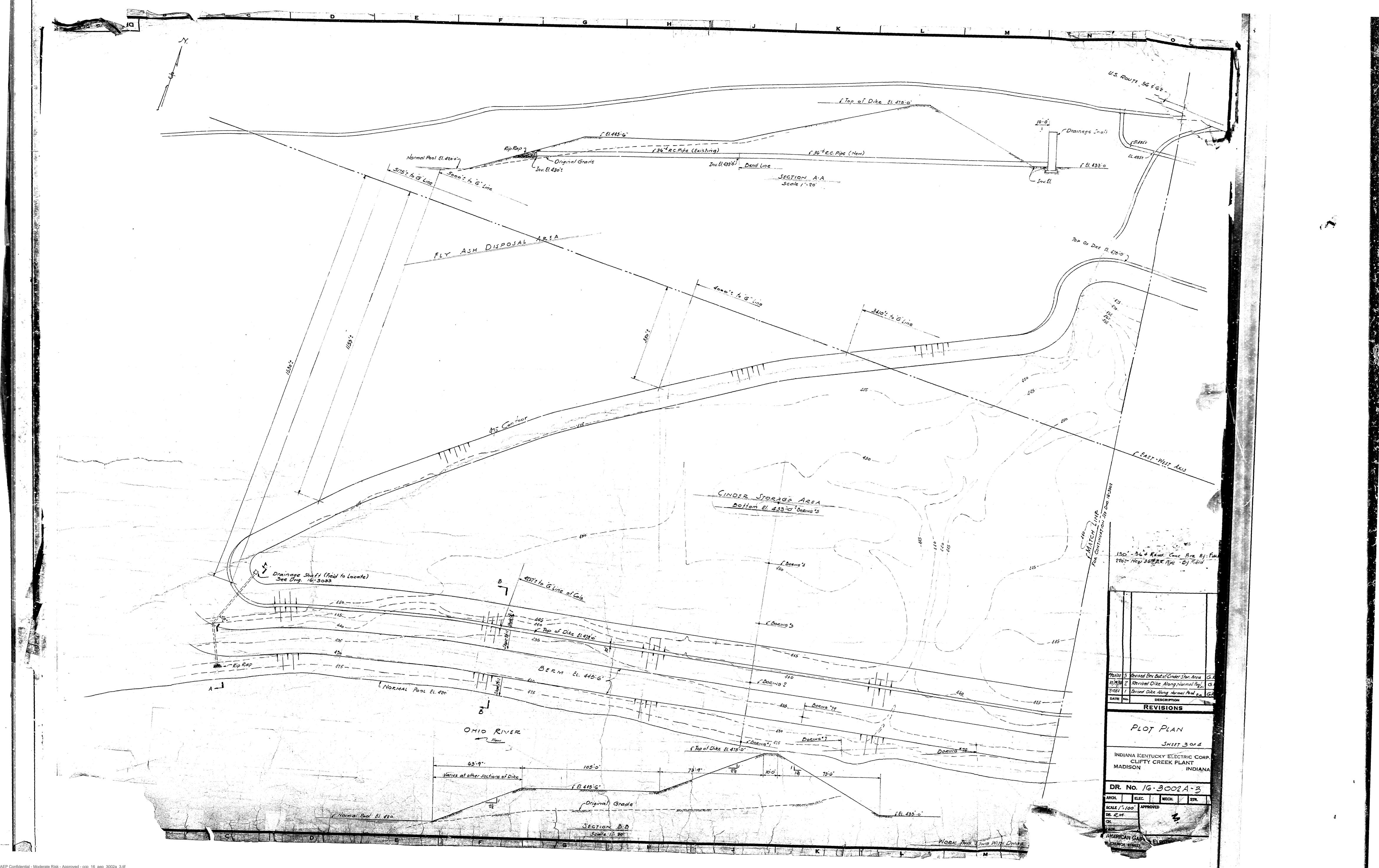
UTM Easting: UTM Northing:

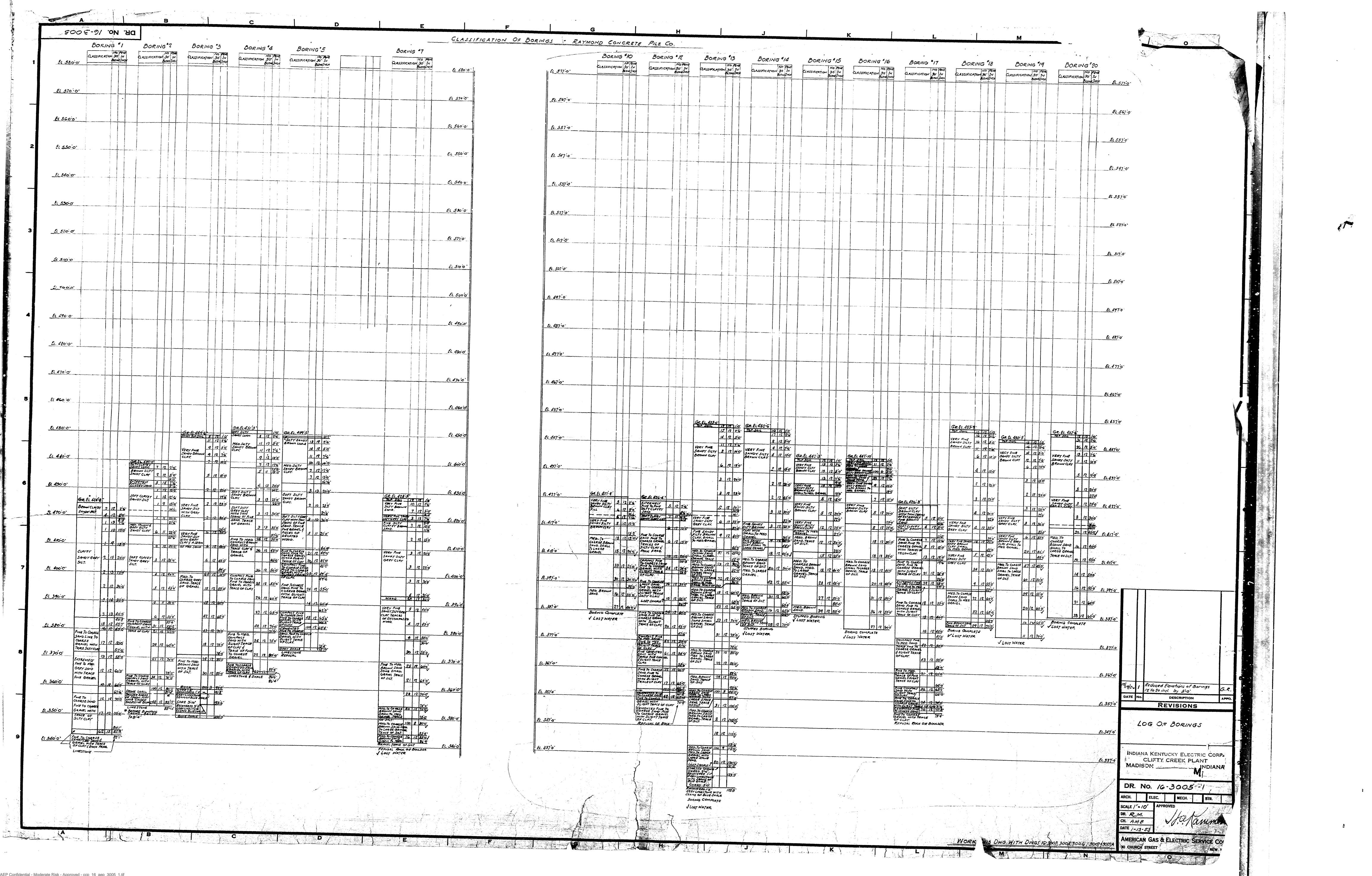
Well Log Top Bottom Formation

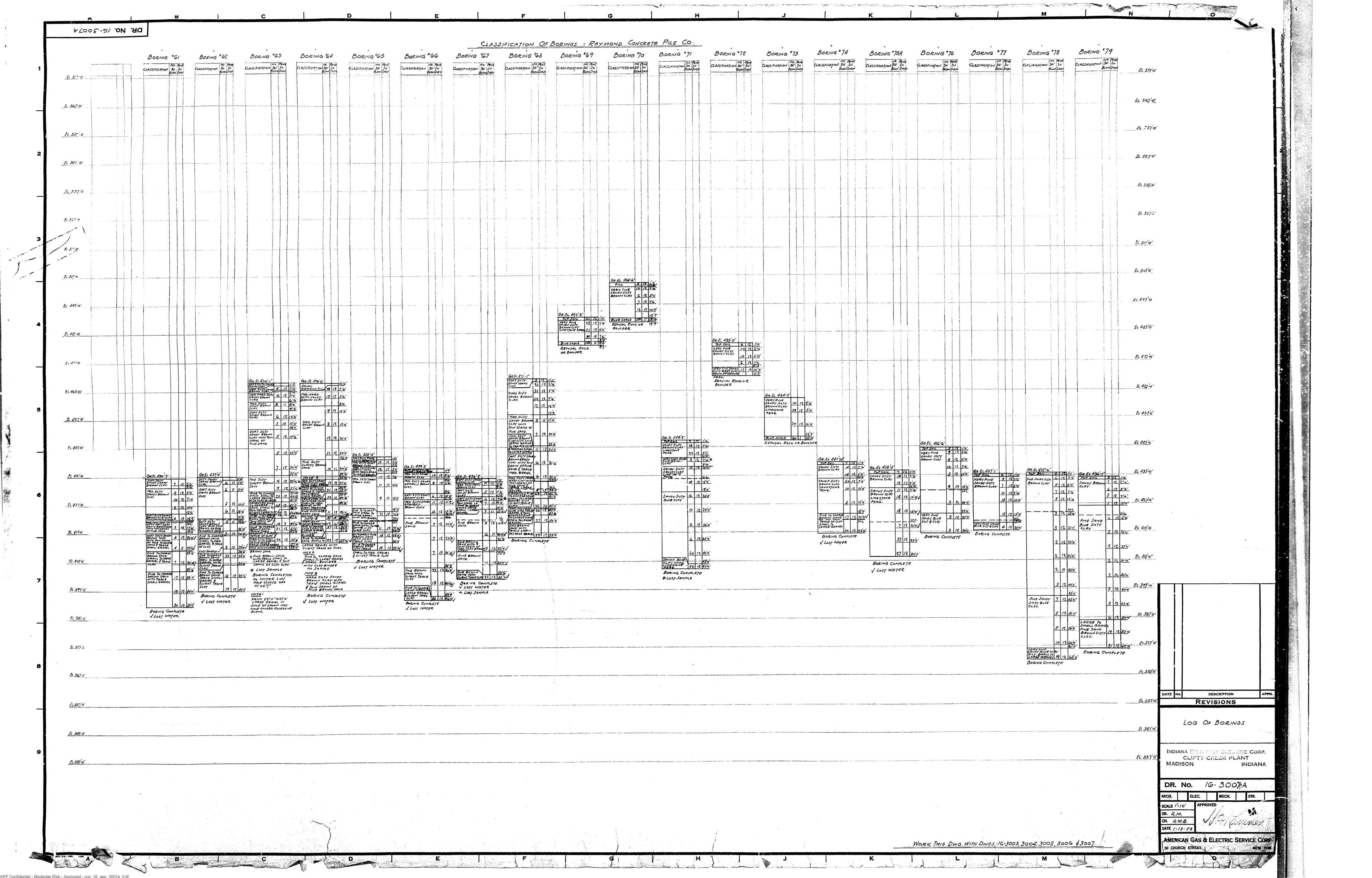
S&G: DRILLING COULD NOT BE VERIFIED BY GATEMAN WHO WORKED AT THE PACK AT

ABOUT THE TIME THE WELL WAS SUPPOSED TO HAVE BEEN DRILLED. THERE IS NOW A LARGE ELECTRIC CO COMPLEX ON THE NW 1/4 NW 1/4 OF 4 J U HORTON IN KENTUCKY

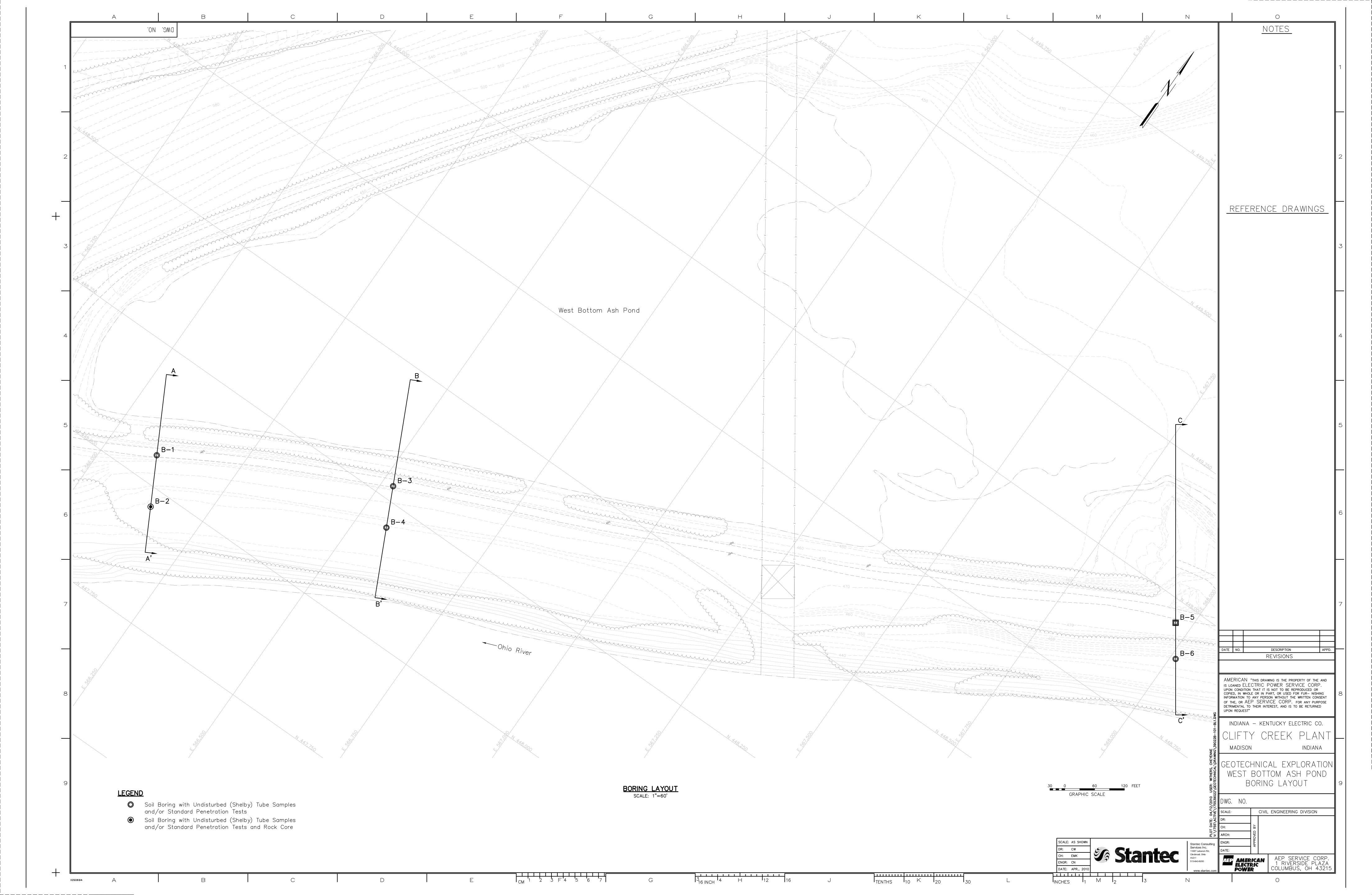

ELECTRIC CO. TOPOGRAPHY RIVER FLAT PUMP CAPACITY; 20 STAGE HORSEPOWER; 10 KIND


ELECTRIC:


APPENDIX E


Geotechnical Data

AGESC (1953)



Stantec (2016)

Project No	umber	175539022			Location West Crest: West Pond Dam					
Project Na	ame	AEP Clifty Creek /	Ash Ponds		Boring No.	B-1		Total Depth 71.5 ft		
County	_	Jefferson, IN			Surface Ele	vation	47	3.4 ft		
Project Ty	уре	Geotechnical Explo	oration		Date Started	d1	1/3/09	Completed11/4/09		
Superviso	or	C. Nisingizwe Dr	iller M. Wet	hington	Depth to Water 40.0 ft		Date/Time	11/4/09		
Logged B	Ву	C. Nisingizwe			Depth to Water 39.2 ft		Date/Time	11/13/09		
Lithology	ıy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %		
	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks	
473.4'	0.0'	Top of Hole								
- - - -		Lean Clay With Sayellowish brown w gray, damp to moi medium stiff to ve Fill	vith light st,	SPT-1	2.5 - 4.0 5.0 - 6.5	1.2	6-5-6 5-5-5	17 15	N = 11 - N = 10 - N = 10	
- -				ST-3	7.5 - 9.5	2.0		23	- -	
-				SPT-4	10.0 - 11.5	0.4	1-5-5	21	N = 10	
- - -				SPT-5	12.5 - 14.0	1.3	2-2-5	17	N = 7	
- - -				ST-6	15.0 - 17.0	2.0		20	- - -	
-				SPT-7	17.5 - 19.0	1.5	5-6-9	19	N = 15	
- - -				SPT-8	20.0 - 21.5	1.5	3-5-10	15	N = 15	
- -				SPT-9	22.5 - 24.0	1.5	3-7-7	17	N = 14	
_ _ 2				SPT-10	25.0 - 26.5	1.2	3-3-5	17	N = 8	
				SPT-11	27.5 - 29.0	1.3	3-4-8	20	N = 12	
				SPT-12	30.0 - 31.5	1.4	4-4-7	19	N = 11	
-				SPT-13	32.5 - 34.0	1.3	2-4-5	18	N = 9	
- 425 0	27 51			SPT-14	35.0 - 36.5	1.1	2-5-5	17	N = 10	
435.9'	37.5'			SPT-15	37.5 - 39.0	1.2	1-2-4	20	N = 6	

Page: 2 of 2

Project N	Number	175539022			Location	ocation West Crest: West Pond Dam				
Project I	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	<u>B-1</u>		Total Dept	h71.5 ft	
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %		
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks	
_ - -		Lean Clay With Sayellowish brown w	vith light , very	SPT-16	40.0 - 41.5	1.3	1-2-3	24	N = 5	
-		soft to medium sti (Continued)	ff	ST-17	42.5 - 44.5	2.0		22	-	
- -				SPT-18	45.0 - 46.5	1.5	1-1-1	30	N = 2	
-				SPT-19	47.5 - 49.0	1.5	1-1-2	23	N = 3	
<u>-</u> -				SPT-20	50.0 - 51.5	1.1	1-1-3	28	N = 4	
-				SPT-21	52.5 - 54.0	1.5	1-1-1	27	N = 2	
-				SPT-22	55.0 - 56.5	1.5	1-2-2	25	N = 4	
-				SPT-23	57.5 - 59.0	1.1	1-1-3	28	N = 4	
- - -				SPT-24	60.0 - 61.5	1.4	1-2-3	28	N = 5	
-				SPT-25	62.5 - 64.0	1.3	1-2-4	37	N = 6	
- - - 405.9'	67.5'			SPT-26	65.0 - 66.5	1.2	2-2-5	34	N = 7	
-		Gray, Weathered Augered	Shale,	SPT-27	67.5 - 69.0	0.4	50+	14	50+	
- - 401.9'	71.5'			SPT-28	70.0 - 71.5	0.3	50+	5	50+	
		No Refusal / Bottom of Hole							- - -	
THANKING C									<u>-</u> -	
SM_EGACY 7505802CLB 7 CREEKGA FNSN-SRA-HILLOGGU 50010									- - -	
7777777									_	
- LEG									-	

Project Nu	umber	175539022			Location	V	est Toe:	West Pond	Dam
Project Na	ame	AEP Clifty Creek /	Ash Ponds		Boring No.	h61.0 ft			
County	_	Jefferson, IN			Surface Elevation 444.0 ft				
Project Ty	ype	Geotechnical Explo	oration		Date Started	d1	1/12/09	Completed	11/12/09
Superviso	or C. Nisingizwe Driller M. Wethington			hington	Depth to Wa	ater 22	2.5 ft	Date/Time	11/12/09
Logged B	sy -	C. Nisingizwe			Depth to Wa	ater N	/A	Date/Time	N/A
Lithology	у		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
444.0'	0.0'	Top of Hole							
-		Lean Clay With Sa yellowish brown w moist to wet, soft t stiff	ith gray,	SPT-1	2.5 - 4.0	1.2	7-8-11	17	N = 19
- -				SPT-2	5.0 - 6.5	0.6	4-3-4	19	N = 7
-				SPT-3	7.5 - 9.0	0.6	3-3-4	24	N = 7
-				ST-4	10.0 - 12.0	1.6		22	_ - -
-				SPT-5	12.5 - 14.0	1.2	2-2-3	25	N = 5
				SPT-6	15.0 - 16.5	1.2	2-2-2	28	N = 4
-				SPT-7	17.5 - 19.0	1.5	1-1-1	30	N = 2
-				SPT-8	20.0 - 21.5	1.5	1-2-2	32	N = 4
-				ST-9	22.5 - 24.5	2.0		29	<u>-</u>
<u>-</u> -				SPT-10	25.0 - 26.5	1.5	2-2-2	29	N = 4
414.0'	30.0'			SPT-11	27.5 - 29.0	0.7	1-4-5	30	N = 9
717.0	50.0	Lean Clay With Sa gray, moist to wet, medium stiff		SPT-12	30.0 - 31.5	1.5	3-3-3	25	N = 6
		medidiri ətili		SPT-13	32.5 - 34.0	1.5	3-3-3	32	N = 6
				SPT-14	35.0 - 36.5	1.5	1-2-3	33	N = 5
				SPT-15	37.5 - 39.0	1.5	1-2-2	31	N = 4

Page: 2 of 2

		175539022			Location	W	est Toe:	West Pond	Dam
Project N	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-2		Total Dept	h61.0 ft
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
_ - -		Lean Clay With S gray, moist to wet medium stiff <i>(Co</i>	, soft to	SPT-16	40.0 - 41.5	1.5	3-3-3	30	N = 6
-				ST-17	42.5 - 44.5	1.5		33	
- -				SPT-18	45.0 - 46.5	1.5	1-1-1	35	N = 2
-									-
- 392.5'	51.5'			SPT-19	50.0 - 51.5	1.5	4-3-3	33	N = 6
- -		Gravel With Silt A gray, wet, very de							
- 388.5'	55.5'			SPT-20	55.0 - 55.5	0.4	11-50+	10	Began Core N = 50+
- - -		Shale, gray, hard, bedded	medium						
383.0'	61.0'			45	5.5	5.5	100	61.0	- -
_		Bottom of Hole		'		'		,	
- - - -		Top of Rock = 56. Elevation (388.0')	0'						- - -
- - -									-
_ _ _									
<u>-</u>									-
- -									
- -									
<u>-</u> -									-
 - -									

Supervisor C. Nisingizwe Depth M. Wethington Depth to Water M. Wa	Project	Number	175539022			Location	M	liddle Cre	st: West Po	nd Dam	
Project Type Geotechnical Exploration Date Started 11/4/09 Completed 11/5/09 Supervisor C. Nisingizwe Driller M. Wethington Depth to Water 40.0 ft Date/Time 11/4/09 11/13/09 Depth to Water 40.0 ft Date/Time 11/4/09 11/13/09 Depth to Water 40.0 ft Date/Time 11/4/09	Project	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-3		Total Dept	h71.5 ft	
Supervisor C. Nisingizwe	County	-	Jefferson, IN			Surface Elev	vation	47	1.6 ft		
Logged By C. Nisingizwe Depth to Water 31.0 ft Date/Time 11/13/0	Project	Туре	Geotechnical Explo	oration		Date Started	d1	1/4/09	Completed	11/5/09	
Lithology	Supervi	sor	C. Nisingizwe Dr	iller M. Wet	hington	Depth to Wa	ater 4	0.0 ft	Date/Time	11/4/09	
Elevation Depth Description Rock Core RQD Run Rec. Ft. Rec. % Run Depth Remarks	Logged	Ву	C. Nisingizwe			Depth to Water 31.0 ft			Date/Time 11/13/09		
471.6' 0.0' Top of Hole Lean Clay With Sand, light yellowish brown with light gray, damp to moist, stiff to very stiff, Fill SPT-1 2.5 - 4.0 0.7 4-5-6 15 N = 11 SPT-2 5.0 - 6.5 1.1 3-4-4 17 N = 8 SPT-3 7.5 - 9.0 1.1 3-3-7 16 N = 10 SPT-5 12.5 - 14.0 1.5 4-4-5 22 N = 9 SPT-6 15.0 - 16.5 1.0 3-4-6 17 N = 10 SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-11 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-14 32.5 - 34.0 1.5 4-7-10 17 N = 17 32.5 - 34.0 1.5 4-7-10 17 N = 17 32.5 34.0 34.5	Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %		
Lean Clay With Sand, light yellowish brown with light gray, damp to moist, stiff to very stiff, Fill SPT-1 2.5 - 4.0 0.7 4-5-6 15 N = 11 SPT-2 5.0 - 6.5 1.1 3-4-4 17 N = 8 SPT-3 7.5 - 9.0 1.1 3-3-7 16 N = 10 ST-4 10.0 - 12.0 2.0 16 SPT-5 12.5 - 14.0 1.5 4-4-5 22 N = 9 SPT-6 15.0 - 16.5 1.0 3-4-6 17 N = 10 SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17			•	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks	
yellowish brown with light gray, damp to moist, stiff to very stiff, Fill SPT-1	471.6'	0.0'	•							_	
ST-4 10.0 - 12.0 2.0 16 SPT-5 12.5 - 14.0 1.5 4-4-5 22 N = 9 SPT-6 15.0 - 16.5 1.0 3-4-6 17 N = 10 SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-17 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-17 32.5 - 34.0 1.5 4-7-10 17 N = 17 SPT-17 32.5 - 34.0 32.5 - 34.	- - - -		yellowish brown with light gray, damp to moist, stiff to very stiff, Fill SPT-1							-	
SPT-5 12.5 - 14.0 1.5 4-4-5 22 N = 9 SPT-6 15.0 - 16.5 1.0 3-4-6 17 N = 10 SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- - -		SPT-3			7.5 - 9.0	1.1	3-3-7	16	N = 10	
SPT-6 15.0 - 16.5 1.0 3-4-6 17 N = 10 SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- -		ST-4			10.0 - 12.0	2.0		16		
SPT-7 17.5 - 19.0 1.3 3-5-7 18 N = 12 ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	<u>-</u>				SPT-5	12.5 - 14.0	1.5	4-4-5	22	N = 9	
ST-8 20.0 - 22.0 2.0 18 SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	-				SPT-6	15.0 - 16.5	1.0	3-4-6	17	N = 10	
SPT-9 22.5 - 24.0 1.5 3-5-7 17 N = 12 SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- -				SPT-7	17.5 - 19.0	1.3	3-5-7	18	N = 12	
SPT-10 25.0 - 26.5 1.3 3-4-5 18 N = 9 SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- - -				ST-8	20.0 - 22.0	2.0		18		
SPT-11 27.5 - 29.0 1.5 6-7-8 16 N = 15 SPT-12 30.0 - 31.5 1.5 5-5-5 18 N = 10 SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- -				SPT-9	22.5 - 24.0	1.5	3-5-7	17	N = 12	
SPT-12 30.0 - 31.5					SPT-10	25.0 - 26.5	1.3	3-4-5	18	N = 9	
SPT-13 32.5 - 34.0 1.5 4-7-10 17 N = 17	- - -				SPT-11	27.5 - 29.0	1.5	6-7-8	16	N = 15	
					SPT-12	30.0 - 31.5	1.5	5-5-5	18	N = 10	
CDT 44 25 0 20 5 4 5 5 7 0 20 N 40	_				SPT-13	32.5 - 34.0	1.5	4-7-10	17	N = 17	
		27 E'			SPT-14	35.0 - 36.5	1.5	5-7-9	22	N = 16	
- 434.1' 37.5' - SPT-15 37.5 - 39.0 1.5 5-7-11 20 N = 18	434.T - -	31.5			SPT-15	37.5 - 39.0	1.5	5-7-11	20	N = 18	

Page: 2 of 2

Project N	Number	175539022			Location Middle Crest: West Pond Dam				
Project N	Name	AEP Clifty Creek / A	Ash Ponds		Boring No.	B-3		Total Dept	h71.5 ft
Litholo	ogv		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Lean Clay With Sa to light brown, moi very stiff to very st	st to wet,	SPT-16	40.0 - 41.5	1.5	1-2-2	24	N = 4
-		(Continued)		SPT-17	42.5 - 44.0	1.5	1-2-2	23	N = 4
-				SPT-18	45.0 - 46.5	1.3	2-3-3	25	N = 6
-				ST-19	47.5 - 49.5	2.0		23	-
[-				SPT-20	50.0 - 51.5	1.5	1-2-2	25	N = 4
-				SPT-21	52.5 - 54.0	1.5	1-1-1	25	N = 2
-				SPT-22	55.0 - 56.5	1.5	1-2-3	24	N = 5
_				SPT-23	57.5 - 59.0	1.5	1-1-1	40	N = 2
-				SPT-24	60.0 - 61.5	1.5	3-4-4	28	N = 8
				SPT-25	62.5 - 64.0	1.5	1-2-4	33	N = 6
-				SPT-26	65.0 - 66.5	1.5	1-3-4	34	N = 7
-				SPT-27	67.5 - 69.0	1.5	2-4-5	29	N = 9
- 400.1'	71.5'			SPT-28	70.0 - 71.5	1.5	3-3-5	31	N = 8
77659022 CLIFTY CREEK GPU FMSM-GRAPHIC LOG GDT 5/20/10		No Refusal / Bottom of Hole							- - - - -
2Y 175639022 CLIFT									- - -

				Location Middle Toe: West Pond Dam				
Project Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-4	·	Total Dept	h71.5 ft
County	Jefferson, IN			Surface Elev	vation	44	4.0 ft	
Project Type	Geotechnical Expl	oration		Date Started	d1	1/10/09	Completed	11/11/09_
Supervisor	C. Nisingizwe Dr	iller M. Wet	hington	Depth to Wa	ater 2	2.5 ft	Date/Time	11/10/09_
Logged By	C. Nisingizwe			Depth to Wa	ater 16	6.0 ft	Date/Time	11/13/09
Lithology		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation Depth	-	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
444.0' 0.0'	Top of Hole							_
- - -	Lean Clay With S brown to dark gra to moist, medium very stiff	y, damp	SPT-1	2.5 - 4.0	1.3	8-8-8	14	N = 16
- -			SPT-2	5.0 - 6.5	1.4	6-7-8	16	N = 15 _
-			ST-3	7.5 - 9.5	2.0			- -
_ -			SPT-4	10.0 - 11.5	1.3	3-5-6	19	N = 11 _
429.0' 15.0			SPT-5	12.5 - 14.0	1.0	2-3-4	22	N = 7
-	Lean Clay With S gray, moist to wet stiff		SPT-6	15.0 - 16.5	1.2	2-2-3	26	N = 5
-	Sun		ST-7	17.5 - 19.5	2.0			-
-			SPT-8	20.0 - 21.5	1.5	2-2-2	26	N = 4
-			SPT-9	22.5 - 24.0	1.5	1-2-3	27	N = 5
-			SPT-10	25.0 - 26.5	1.5	2-2-4	26	N = 6
_			SPT-11	27.5 - 29.0	1.5	1-2-3	27	N = 5
			SPT-12	30.0 - 31.5	1.5	1-1-2	28	N = 3
-			SPT-13	32.5 - 34.0	1.5	1-2-2	35	N = 4
			SPT-14	35.0 - 36.5	1.5	2-4-5	31	N = 9
-			ST-15	37.5 - 39.5	2.0			- -

Page: 2 of 2

l	Project N	Number	175539022			Location Middle Toe: West Pond Dam				
	Project N	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-4		Total Dept	h71.5 ft
ŀ	Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
L	Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-	-		Lean Clay With Sa gray, moist to wet stiff (Continued)	and, , soft to	SPT-16	40.0 - 41.5	1.5	2-2-2	24	N = 4
F					SPT-17	42.5 - 44.0	1.2	1-2-3	33	N = 5
	-				SPT-18	45.0 - 46.5	1.5	2-4-4	35	N = 8
ŀ					SPT-19	47.5 - 49.0	1.2	1-2-4	31	N = 6
	-				SPT-20	50.0 - 51.5	1.5	2-3-4	31	N = 7
-					SPT-21	52.5 - 54.0	1.5	1-2-3	30	N = 5
E	386.5'	57.5'			SPT-22	55.0 - 56.5	1.5	2-3-4	21	N = 7
	000.0	07.0	Gravel With Silt A gray, moist, dense		SPT-23	57.5 - 59.0	1.5	10-17-22	13	N = 39
	-		dense		SPT-24	60.0 - 61.5	1.5	16-28-18	9	N = 46
	-				SPT-25	65.0 - 66.5	0.7	26-50+	12	N = 50+
10	- 372.5'	71.5'			SPT-26	70.0 - 71.5	0.7	20-22-30	9	N = 52
GRAPHIC LOG. GDT 5/20.	-		No Refusal / Bottom of Hole							- - -
CREEK.GPJ FMSM-										- - -
175539022 CLIFTY	-									- -
ITEC/FMSM_LEGACY										- - -

Project I	Number	175539022			Location	E	ast Crest	West Pond	Dam
Project I	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-5		Total Dept	h71.5 ft
County	_	Jefferson, IN			Surface Elev	vation	46	8.7 ft	
Project ⁻	Гуре	Geotechnical Explo	oration		Date Started	1	1/10/09	Completed	I11/10/09_
Supervis	sor	C. Nisingizwe Dri	iller M. Wet	hington	Depth to Wa	ater 4	5.0 ft	Date/Time	11/10/09
Logged	Ву	C. Nisingizwe			Depth to Water 33.8 ft			Date/Time	11/13/09
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
468.7'	0.0'	Top of Hole							_
- - - -		Lean Clay With Sayellowish brown w gray, damp to moi medium stiff to ver Fill	SPT-1	2.5 - 4.0 5.0 - 6.5	1.5 1.5	6-9-10 4-4-5	15 17	N = 19 - N = 9 -	
- - -			ST-3	7.5 - 9.5	1.6		17	- -	
<u>-</u> - -		SPT-4			10.0 - 11.5	1.3	6-7-8	23	N = 15
-				SPT-5	12.5 - 14.0	0.0	3-4-6		N = 10
<u>-</u> - -				SPT-6	15.0 - 16.5	1.3	1-3-4	16	N = 7
-				SPT-7	17.5 - 19.0	1.0	5-7-9	16	N = 16
- - -				SPT-8	20.0 - 21.5	0.6	1-2-5	18	N = 7
- -				ST-9	22.5 - 24.5	1.8		19	- -
- -				SPT-10	25.0 - 26.5	1.2	2-3-5	22	N = 8
- -				SPT-11	27.5 - 29.0	1.4	1-2-5	25	N = 7
- - -				SPT-12	30.0 - 31.5	1.3	4-5-7	23	N = 12
_ _				SPT-13	32.5 - 34.0	1.5	2-3-5	19	N = 8
- - 432.2'	36.5'	1		SPT-14	35.0 - 36.5	1.5	4-6-10	18	N = 16
 - -		Lean Clay With Sa gray, moist, soft	ana,	SPT-15	37.5 - 39.0	1.5	2-3-3	21	N = 6
			Ctantac	Concul	tina Services	Ino		•	5/20/10

Page: 2 of 2

Project Number 175539022					Location	Ea	ast Crest	: West Pond	Dam
Project N	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-5		Total Dept	h71.5 ft
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-		Lean Clay With Sagray, moist, soft (Continued)	and,	SPT-16	40.0 - 41.5	1.3	1-1-2	25	N = 3
_				ST-17	42.5 - 44.5	2.0		23	
421.2'	47.5'			SPT-18	45.0 - 46.5	1.5	1-1-3	25	N = 4
421.2	47.5	Sandy Silt, light ye brown to gray, we stiff		SPT-19	47.5 - 49.0	1.5	1-1-3	28	N = 4
		3011		SPT-20	50.0 - 51.5	1.5	1-1-5	24	N = 6
				SPT-21	52.5 - 54.0	1.0	1-1-1	22	N = 2
				SPT-22	55.0 - 56.5	1.3	1-2-2	23	N = 4
				SPT-23	57.5 - 59.0	1.5	1-2-3	26	N = 5
-				SPT-24	60.0 - 61.5	1.5	2-3-4	22	N = 7
				SPT-25	62.5 - 64.0	1.5	2-3-6	27	N = 9
				SPT-26	65.0 - 66.5	1.5	2-5-6	28	N = 11
				SPT-27	67.5 - 69.0	1.5	2-4-5	28	N = 9
397.2'	71.5'			SPT-28	70.0 - 71.5	1.5	3-5-8	30	N = 13
		No Refusal / Bottom of Hole							

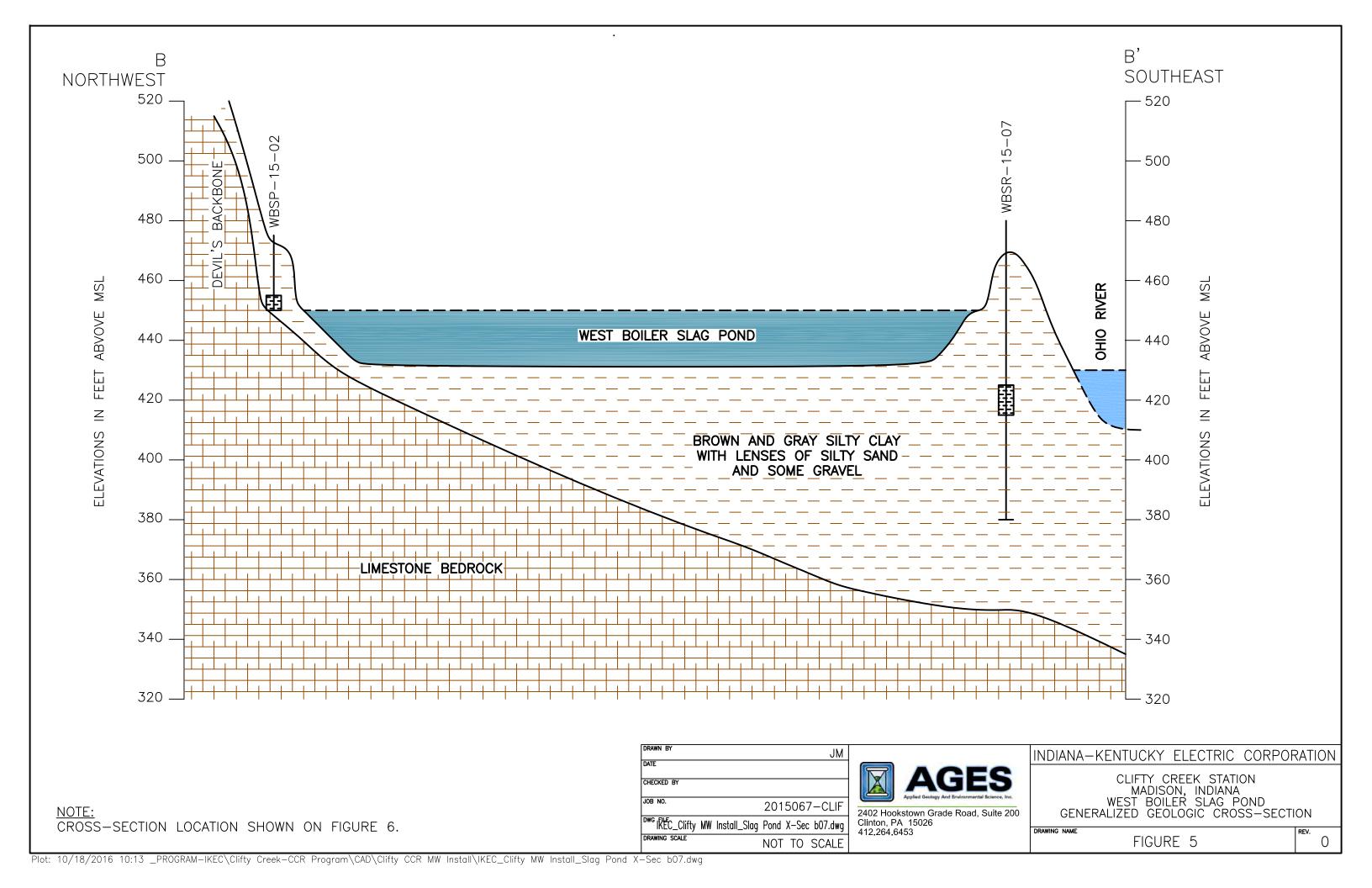
5/20/1

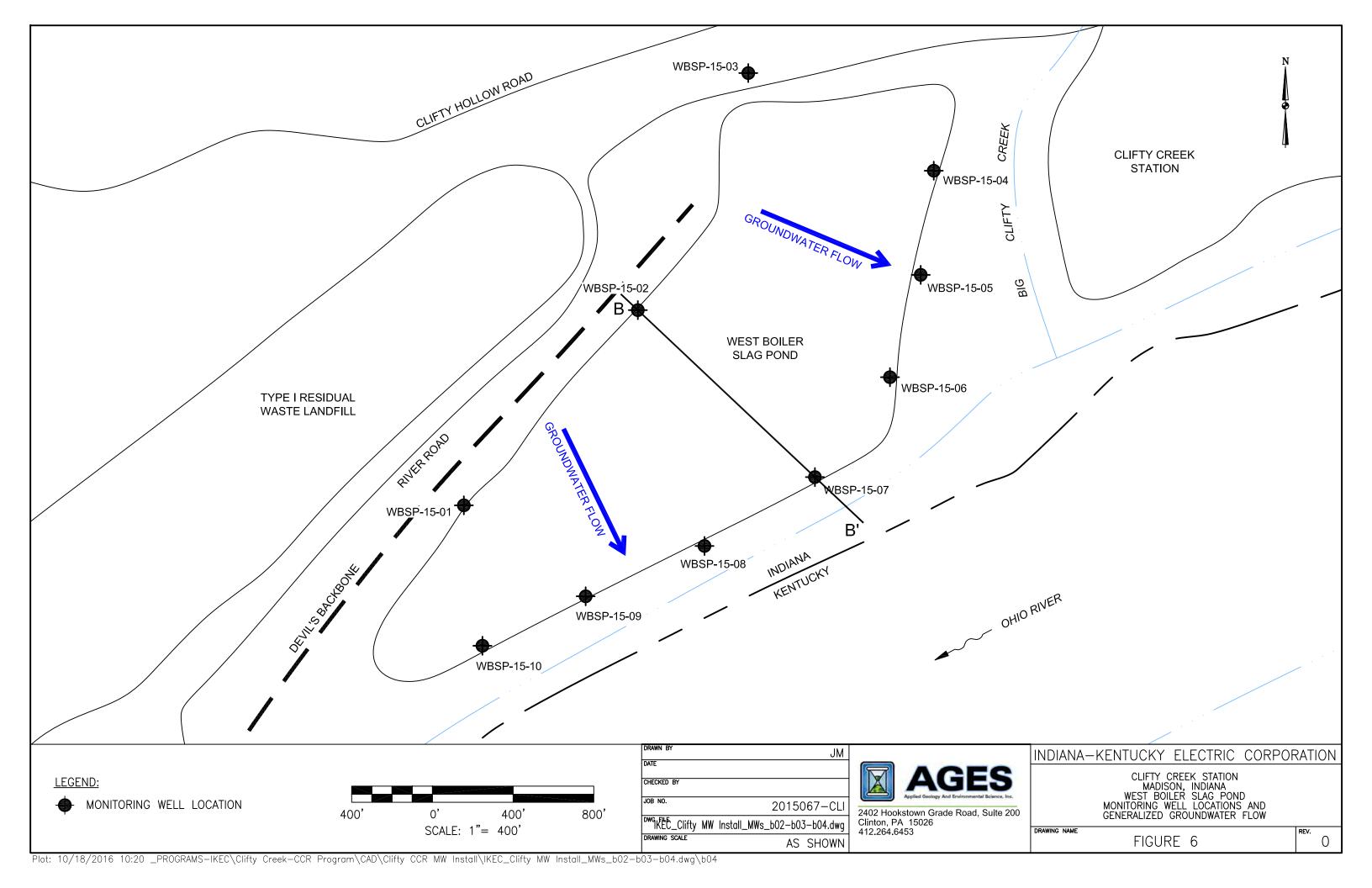
Project Nu	umber	175539022		Location	E	ast Toe: \	Nest Pond [Dam	
Project Na	ame	AEP Clifty Creek /	Ash Ponds		Boring No.	B-6		Total Dept	h71.5 ft
County	_	Jefferson, IN			Surface Elev	vation	44	5.5 ft	
Project Ty	/pe	Geotechnical Explo	oration		Date Started	d1	1/19/09	Completed	11/19/09
Superviso	or _	C. Nisingizwe Dri	ller Danny	Jessie	Depth to Wa	ater 30	0.0 ft	Date/Time	11/19/09
Logged By	y	C. Nisingizwe			Depth to Water N/A Date/Time				N/A
Lithology	у		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
445.5'	0.0'	Top of Hole							_
- - - -		Lean Clay With Sa brown to gray, dar moist, stiff to very	SPT-1	2.5 - 4.0	1.0	2-4-4	19	N = 8	
- - -			SPT-2	5.0 - 6.5	1.0	4-4-6	18	N = 10	
-		ST-			7.5 - 9.5	2.0		25	_
-		SP			10.0 - 11.5	1.2	5-7-11	16	N = 18
-				SPT-5	12.5 - 14.0	1.1	2-2-2	21	N = 4
-				SPT-6	15.0 - 16.5	1.3	1-1-2	31	N = 3
-				ST-7	17.5 - 19.5	1.2		32	-
-				SPT-8	20.0 - 21.5	1.5	0-1-0	32	N = 1
_				SPT-9	22.5 - 24.0	1.5	0-0-2	29	N = 2
- - 418.0'	27.5'			SPT-10	25.0 - 26.5	1.5	2-1-3	29	N = 4
		Sandy Silt, gray, n wet, very soft to st		SPT-11	27.5 - 29.0	1.5	0-3-2	32	N = 5
				SPT-12	30.0 - 31.5	1.5	0-0-3	32	N = 3
				SPT-13	32.5 - 34.0	1.5	0-1-2	33	N = 3
				SPT-14	35.0 - 36.5	1.5	0-0-1	35	N = 1
				SPT-15	37.5 - 39.0	1.5	0-0-1	30	N = 1 - 5/20/10

Page: 2 of 2

Pi	Project Number 175539022					Location East Toe: West Pond Dam				
Pr	roject N	Name	AEP Clifty Creek /	Ash Ponds		Boring No.	B-6 Total Depth 71.5 f			h71.5 ft
	Litholo	nav		Overburden	Sample #	Depth	Rec. Ft.	Blows	Mois.Cont. %	
Elev	/ation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Run Depth	Remarks
-			Sandy Silt, gray, r wet, very soft to si (Continued)	tiff	ST-16		1.1		31	<u>-</u> - -
_					SPT-17	42.5 - 44.0	1.5	0-1-1	35	N = 2
-					SPT-18	45.0 - 46.5	1.5	0-0-1	40	N = 1
-					SPT-19	47.5 - 49.0	1.5	0-0-1	40	N = 1
					SPT-20	50.0 - 51.5	1.5	0-2-3	39	N = 5
-					SPT-21	52.5 - 54.0	1.5	0-5-6	27	N = 11
-					SPT-22	55.0 - 56.5	1.5	4-3-4	31	N = 7
-					SPT-23	57.5 - 59.0	1.5	4-4-5	35	N = 9
- - - -					SPT-24	60.0 - 61.5	1.5	5-5-6	28	N = 11
- - -					SPT-25	65.0 - 66.5	1.5	4-5-4	28	N = 9
- - 37	4.0'	71.5'	N. D. C. L.		SPT-26	70.0 - 71.5	0.0	5-5-5		N = 10
77858022 CLIFTY CREEK GPJ. FNSM-GRAPHICLOG, GDT. 5/2/			No Refusal / Bottom of Hole							- - - - - -
STANTEC/FMSM_LEGACY 170558										- - -

AGES (2018)


TABLE 3 GROUNDWATER MONITORING NETWORK WEST BOILER SLAG POND CLIFTY CREEK STATION MADISON, INDIANA

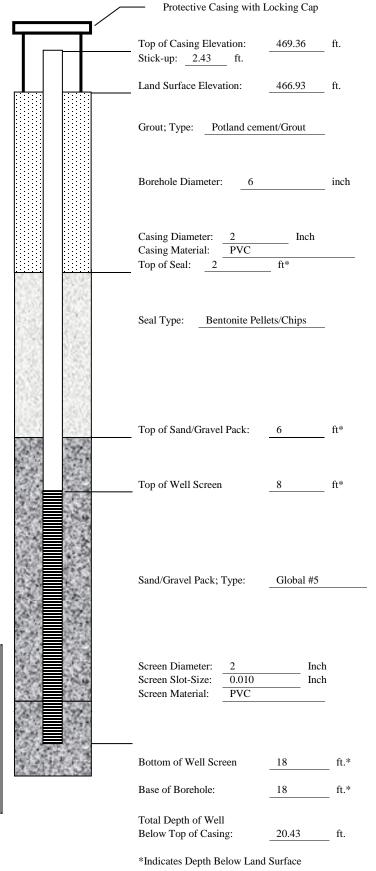

Monitoring Well	Designation	Date of			Top of Casing	Top of Screen	Base of Screen	Total Depth From Top of	
ID		Installation	Northing	Easting	Elevation (ft) ²	Elevation (ft) ²	Elevation (ft)	Elevation (ft)	Casing (ft)
WBSP-15-01	Upgradient	11/30/2015	449072.27	566322.12	466.93	469.36	458.93	448.93	20.43
WBSP-15-02	Upgradient	11/11/2015	449803.91	566987.30	473.83	476.76	457.83	452.83	23.93
WBSP-15-03	Upgradient	12/4/2015	451181.98	568093.60	484.91	488.03	476.91	471.91	16.12
WBSP-15-04	Downgradient	11/12/2015	450610.07	568637.65	471.17	473.71	416.17	406.17	67.54
WBSP-15-05	Downgradient	11/17/2015	450051.40	568495.72	471.90	474.42	410.90	400.90	73.52
WBSP-15-06	Downgradient	11/19/2015	449470.57	568402.50	471.28	473.51	395.78	385.78	87.73
WBSP-15-07	Downgradient	11/23/2015	448947.93	567946.39	468.82	471.31	426.82	416.82	54.49
WBSP-15-08	Downgradient	11/25/2015	448625.46	567343.24	468.56	471.06	415.76	405.76	65.30
WBSP-15-09	Downgradient	1/6/2016	448359.31	566711.13	471.21	470.69	421.21	410.21	59.48
WBSP-15-10	Downgradient	1/5/2016	448125.51	566225.21	471.21	470.69	425.21	435.21	55.48

Notes:

^{1.} The Well locations are referenced to the North American Datum (NAD83), east zone coordinate system.

^{2.} Elevations are referenced to the North American Vertical Datum (NAVD) 1988

BORING NO. <u>WBSP-15-01</u> SAMPLE/CORE LOG


Project Number:	2015067 Clifty Creek Plant		Log Page	1	of	1	<u> </u>	
Project Location:	West Boiler Slag Pond		Drilling Co	ntractor:	Bowse	er Morn	er	
Drilling Date(s):	11/30/15		AGES Geo	logist:	Mike (Gelles		
Drilling Method:	Roto-Sonic	Coring Device Size:	NA	Hamme	r Wt.	NA	and Drop	NA
Sampling Method:	NA	Borehole Diameter:	6"	Drilling	Fluid U	sed:	Water	
Sampling Interval:	NA	Borehole Depth:	18'	Surface	Elevatio	n:	466.93' MS	L
NOTES/COMMI	ENTS:							
								_

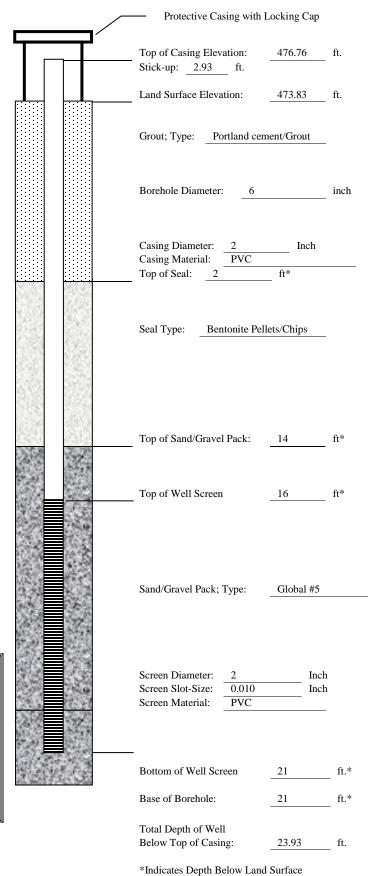
Depth Interval (feet)	Sample Recovery (feet)	Penetration (Hyd. Pres. or Blow Counts)	Sample/Core Description	PID (PPM)
0-10	8	NA	Yellow brown silty clay, stiff, plastic, moist	N/A
10-18	8	NA	10'-15' Yellow brown silty clay, stiff, plastic, moist; 12'-14' wet; 15'18' Light gray limestone	N/A
				N/A

WELL NO. WBSP-15-01

Project Number:	2015067
	Clifty Creek Plant –
Project Location:	West Boiler Slag Pond
J · · · · · · · ·	
Installation Date(s):	11/30/15
Drilling Method:	Roto-Sonic
Drilling Contractor:	Bowser Morner
Development Date(s):	12/16/15
	Submersible Pump,
Development Method:	Peristaltic Pump, Bailer
Field parameters stabilize	ed.
Turbidity = 3.12 NTUs	
Volume Purged:	33 gallons
	
Static Water-Level*	16.76'
Top of Well Casing Elev	ration: 469.36'
Well Purpose: Groundwater Monitoring Northing (Y): 449072.2' Easting (X): 566322.12	
	ed well screen with an inner lean quartz sand and an outer

CONSTRUCTION MATERIALS USED: 4 Bags of Sand 2 Bags/Buckets Bentonite Pellets Bags Portland for Grout Bags Concrete/Sakrete

BORING NO. <u>WBSP-15-02</u> SAMPLE/CORE LOG


Project Number:	2015067 Clifty Creek Plant		Log Page	1	of	f <u>1</u>	<u> </u>	
Project Location:	West Boiler Slag Pond		Drilling Co	ntractor:	Bowse	er Morn	er	
Drilling Date(s):	11/11/15		AGES Geo	logist:	Mike	Gelles		
Drilling Method:	Roto-Sonic	Coring Device Size:	NA	Hamme	r Wt.	NA	and Drop	NA
Sampling Method:	NA	Borehole Diameter:	6"	Drilling	Fluid U	sed:	Water	
Sampling Interval:	NA	Borehole Depth:	21'	Surface	Elevatio	on:	473.83' MS	<u>L</u>
NOTES/COMMI	ENTS:							

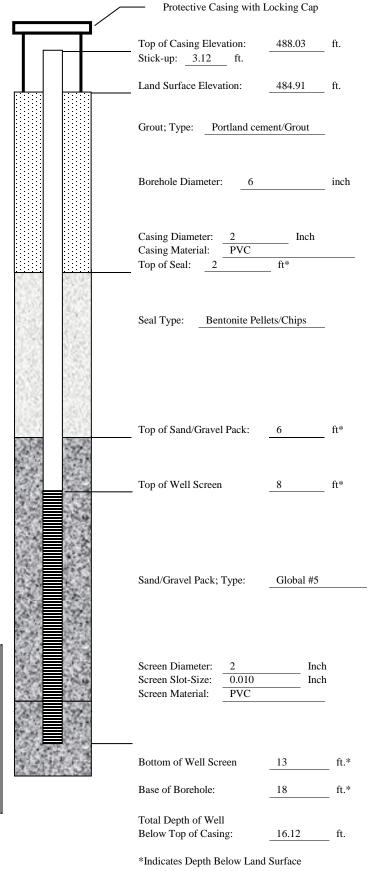
Depth Interval (feet)	Sample Recovery (feet)	Penetration (Hyd. Pres. or Blow Counts)	Sample/Core Description	PID (PPM)
0-10	5	NA	Red brown silt, fine sand, black boiler slag, loose, moist	N/A
10-20	8	NA	10'-11' Red brown silt, fine sand, black boiler slag, loose, moist; 11'-19' light brown silty clay, stiff, moist; 19'-20' light brown silty clay, stiff, rock fragments, moist	N/A
20-21	1	NA	Gray limestone	N/A
				N/A

WELL NO. WBSP-15-02

Project Number:	2015067
	Clifty Creek Plant –
Project Location:	West Boiler Slag Pond
Installation Date(s):	11/11/15
Drilling Method:	Roto-Sonic
Drilling Contractor:	Bowser Morner
Development Date(s):	12/7/15
	Submersible Pump,
Development Method:	Peristaltic Pump, Bailer
Field parameters stabiliz	ed.
Turbidity = 3.69 NTUs	
Volume Purged:	114.5 gallons
Static Water-Level*	15.40'
Top of Well Casing Elev	vation: 476.76'
Well Purpose:	
Groundwater Monitoring	2
Northing (Y): 449803.9	
Easting (X): 566987.30)
Comments/Notes:	
Comments/Notes: 2 inch PVC riser and scr	een
2 inch PVC riser and scr	een ed well screen with an inner
2 inch PVC riser and scr 5 ft of 0.010 pre-packe filter pack of 0.40 mm c	ed well screen with an inner clean quartz sand and an outer
2 inch PVC riser and scr 5 ft of 0.010 pre-packe	ed well screen with an inner clean quartz sand and an outer
2 inch PVC riser and scr 5 ft of 0.010 pre-packe filter pack of 0.40 mm c	ed well screen with an inner clean quartz sand and an outer
2 inch PVC riser and scr 5 ft of 0.010 pre-packe filter pack of 0.40 mm c	ed well screen with an inner clean quartz sand and an outer n mesh.

CONSTRUCTION MATERIALS USED: 3 Bags of Sand 4 Bags/Buckets Bentonite Pellets Bags Portland for Grout Bags Concrete/Sakrete

BORING NO. <u>WBSP-15-03</u> SAMPLE/CORE LOG

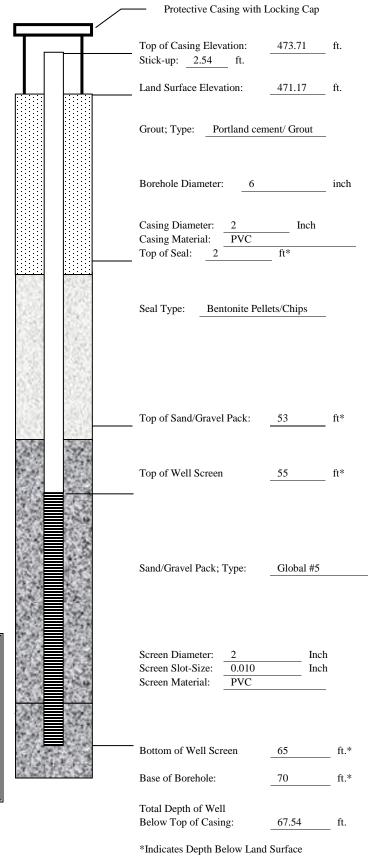

Project Number:	2015067 Clifty Creek Plant		Log Page	1	of _	1		
Project Location:	West Boiler Slag Pond		Drilling Co	ntractor:	Bowser M	/lorne	er	
Drilling Date(s):	12/4/15		AGES Geo	logist:	Mike Gel	les		
Drilling Method:	Roto-Sonic	Coring Device Size:	NA	Hamme	r Wt. N	ΙΑ	and Drop	NA
Sampling Method:	NA	Borehole Diameter:	6"	Drilling	Fluid Used	l: -	Water	
Sampling Interval:	NA	Borehole Depth:	18'	Surface	Elevation:	-	484.91' MS	<u>L</u>
NOTES/COMMI	ENTS:							

Depth Interval (feet)	Sample Recovery (feet)	Penetration (Hyd. Pres. or Blow Counts)	Sample/Core Description	PID (PPM)
0-10	2	NA	Brown silty clay, black boiler slag, limestone fragments, stiff, plastic, moist	N/A
10-18	8	NA	10'-13' Brown silty clay, black boiler slag, limestone fragments, stiff, plastic, moist; 13'-18' Gray, limestone, weathered, dry	N/A
				N/A

WELL NO. WBSP-15-03

Project Number:	2015067
	Clifty Creek Plant –
Project Location:	West Boiler Slag Pond
. 3	
Installation Date(s):	12/4/15
Drilling Method:	Roto-Sonic
Drilling Contractor:	Bowser Morner
Development Date(s):	12/15/15
1	
	Submersible Pump,
Development Method:	Peristaltic Pump, Bailer
Field parameters stabiliz	red.
Turbidity = 2.42 NTUs	
V.1 D. 1	145 11
Volume Purged:	14.5 gallons
Static Water-Level*	11.08'
Top of Well Casing Elev	vation: 488.03'
Well Purpose:	
Groundwater Monitoring	
Groundwater Monitoring Northing (Y): 451181.9	8
Groundwater Monitoring	8
Groundwater Monitoring Northing (Y): 451181.9 Easting (X): 568093.60 Comments/Notes: 2 inch PVC riser and scr 5 ft of 0.010 pre-packet	reen ed well screen with an inner clean quartz sand and an outer
Groundwater Monitoring Northing (Y): 451181.9 Easting (X): 568093.60 Comments/Notes: 2 inch PVC riser and scr 5 ft of 0.010 pre-packe filter pack of 0.40 mm c	reen ed well screen with an inner clean quartz sand and an outer
Groundwater Monitoring Northing (Y): 451181.9 Easting (X): 568093.60 Comments/Notes: 2 inch PVC riser and scr 5 ft of 0.010 pre-packe filter pack of 0.40 mm c	reen ed well screen with an inner elean quartz sand and an outer n mesh.

CONSTRUCTION MATERIALS USED: 3 Bags of Sand 4 Bags/Buckets Bentonite Pellets Bags Portland for Grout Bags Concrete/Sakrete


BORING NO. <u>WBSP-15-04</u> SAMPLE/CORE LOG

Project Number:	2015067 Clifty Creek Plant		Log Page	1	of	1	
Project Location:	West Boiler Slag Pond		Drilling Co	ntractor:	Bowser Mo	orner	_
Drilling Date(s):	11/11/15-11/12/15		AGES Geo	logist:	Mike Gelle	es	_
Drilling Method:	Roto-Sonic	Coring Device Size:	NA	Hammer	Wt. NA	and Drop NA	
Sampling Method:	NA	Borehole Diameter:	6"	Drilling	Fluid Used:	Water	_
Sampling Interval:	NA	Borehole Depth:	70'	Surface	Elevation:	471.17' MSL	_
NOTES/COMME	ENTS:						

Depth Interval (feet)	Sample Recovery (feet)	Penetration (Hyd. Pres. or Blow Counts)	Sample/Core Description	PID (PPM)
0-10	8	NA	Red brown silt, fine sand, boiler slag, loose, moist	N/A
10-20	8	NA	Red brown silt, fine sand, boiler slag, loose, moist	N/A
20-30	8	NA	20'-28' Red brown silt, fine sand, boiler slag, loose, moist; 28'-30' wet	N/A
30-40	7	NA	Red brown silt, fine sand, boiler slag, loose, wet	N/A
40-50	10	NA	40'-45' Red brown silt, fine sand, boiler slag, loose, wet; 45'-47' Yellow brown clay, stiff, plastic, moist; 47'-49' Yellow brown gravel angular, fine and medium sand, wet; 49'-50' Orange brown sandy clay, fine, stiff, moist	N/A
50-60	9	NA	50'-53' Orange brown sandy clay, fine, stiff, moist; 53' – 60' Light brown sand, fine, medium, coarse, gravel angular fine, medium, coarse, large, wet	N/A
60-70	7	NA	60'-68.5' Light brown sand, fine, medium, coarse, gravel angular fine, medium, coarse, wet; 68.5' -70' light brown sand, fine, medium, coarse, black coal and peat, wet	N/A
				N/A

2015067 Project Number: Clifty Creek Plant -West Boiler Slag Pond Project Location: Installation Date(s): 11/11/15-11/12/15 Drilling Method: Roto-Sonic Drilling Contractor: Bowser Morner Development Date(s): 12/9/15 Development Method: Submersible Pump Field parameters stabilized. Turbidity = 0.91 NTUs Volume Purged: 65 gallons Static Water-Level* 50.68 Top of Well Casing Elevation: 473.71' Well Purpose: Groundwater Monitoring Northing (Y): 450610.07 Easting (X): 568637.65 Comments/Notes: 2 inch PVC riser and screen 10 ft of 0.010 pre-packed well screen with an inner filter pack of 0.40 mm clean quartz sand and an outer layer of food-grade nylon mesh. Inspector: Michael Gelles

CONSTRUCTION MATERIALS USED: Bags of Sand Bags/Buckets Bentonite Pellets Bags Portland for Grout Bags Concrete/Sakrete

BORING NO. <u>WBSP-15-05</u> SAMPLE/CORE LOG

Project Number:	2015067 Clifty Creek Plant		Log Page	1	of	1	<u> </u>	
Project Location:	West Boiler Slag Pond		Drilling Co	ntractor:	Bowser	Morne	er	
Drilling Date(s):	11/13/15-11/17/15		AGES Geo	logist:	John Car	mpbel	1	
Drilling Method:	Roto-Sonic	Coring Device Size:	NA	Hammer	Wt	NA	and Drop	NA
Sampling Method:	NA	Borehole Diameter:	6"	Drilling	Fluid Use	d:	Water	
Sampling Interval:	NA	Borehole Depth:	71'	Surface	Elevation:		471.90' MS	<u>L</u>
NOTES/COMMI	ENTS:							

Depth Interval (feet)	Sample Recovery (feet)	Penetration (Hyd. Pres. or Blow Counts)	Sample/Core Description	PID (PPM)
0-10	8	NA	Red brown silt, fine sand, black boiler slag, loose, moist	N/A
10-20	8	NA	Red brown silt, fine sand, black boiler slag, loose, moist	N/A
20-30	6	NA	Red brown silt, fine sand, black boiler slag, loose, moist	N/A
30-40	5	NA	30'-33' Red brown silt, fine sand, black boiler slag, loose, moist; 33'-35' brown clay, wet, loose	N/A
40-50	8	NA	40'-45' Brown clay(till), plastic, moist; 45'-50' gray clay(till), plastic, moist	N/A
50-60	9	NA	50'-59' Gray silty clay(till); sand fine, medium, coarse, and gravel subrounded fine, medium, coarse, large, little silt, very moist	N/A
60-70	5	NA	Gray to brown sand fine, medium, coarse, and gravel subrounded fine, medium, coarse, large, little silt, wet	N/A
70-71	1	NA	Gray to brown sand fine, medium, coarse, and gravel subrounded fine, medium, coarse, large, little silt, wet	N/A
				N/A

WELL NO. WBSP-15-05

2015067 Project Number: Clifty Creek Plant -West Boiler Slag Pond Project Location: Installation Date(s): 11/13/15-11/17/15 Drilling Method: Roto-Sonic Drilling Contractor: Bowser Morner Development Date(s): 12/16/15 Development Method: Submersible Pump Field parameters stabilized. Turbidity = 4.28 NTUs Volume Purged: 46 gallons Static Water-Level* 52.42 Top of Well Casing Elevation: 474.42' Well Purpose: Groundwater Monitoring Northing (Y): 450051.40 Easting (X): 568495.72 Comments/Notes: 2 inch PVC riser and screen 10 ft of 0.010 pre-packed well screen with an inner filter pack of 0.40 mm clean quartz sand and an outer layer of food-grade nylon mesh. Inspector: John Campbell

Protective Casing with Locking Cap Top of Casing Elevation: 474.42 ft. Stick-up: 2.52 ft. Land Surface Elevation: 471.90 Grout; Type: Portland cement/ Grout Borehole Diameter: 6 Casing Diameter: Inch Casing Material: Top of Seal: Seal Type: Bentonite Pellets/Chips Top of Sand/Gravel Pack: Top of Well Screen Sand/Gravel Pack; Type: Global #5 Screen Diameter: Inch Screen Slot-Size: 0.010 Inch Screen Material: PVC Bottom of Well Screen 71 ft.* Base of Borehole: ft.* Total Depth of Well Below Top of Casing: 73.52 ft.

*Indicates Depth Below Land Surface

${\bf CONSTRUCTION\ MATERIALS\ USED:}$

6 Bags of Sand

2 Bags/Buckets Bentonite Pellets

18 Bags Portland for Grout

Bags Concrete/Sakrete

BORING NO. WBSP-15-06 SAMPLE/CORE LOG

Project Number:	2015067 Clifty Creek Plant		Log Page	1	of	1		
Project Location:	West Boiler Slag Pond		Drilling Co	ntractor:	Bowser M	Iorne	r	
Drilling Date(s):	11/18/15-11/19/15		AGES Geol	logist:	John Cam	pbell	[
Drilling Method:	Roto-Sonic	Coring Device Size:	NA	Hammei	Wt. N	A	and Drop	NA
Sampling Method:	NA	Borehole Diameter:	6"	Drilling	Fluid Used:	: -	Water	
Sampling Interval:	NA	Borehole Depth:	90'	Surface	Elevation:	_	471.28' MS	L
NOTES/COMMI	ENTS:							

Depth Interval (feet)	Sample Recovery (feet)	Penetration (Hyd. Pres. or Blow Counts)	Sample/Core Description	PID (PPM)
0-10	7	NA	Black boiler slag and ash, loose, fill	N/A
10-20	7	NA	Black boiler slag and ash, loose, fill	N/A
20-30	6	NA	Black boiler slag and ash, loose, fill; 27'-30' wet	N/A
30-40	6	NA	Black boiler slag and ash, loose, fill, 30'-34' wet; 34'-36' brown clay, some silt, hard, damp	N/A
40-50	10	NA	40'-48' Gray silty clay, soft, very moist, moist 7'-8'; brown silty clay, firm, damp	N/A
50-60	10	NA	Gray silty clay, firm to soft, moist to very moist	N/A
60-70	10	NA	60'-65' Gray silty clay, firm, moist to very moist; 65' – 70' Gray silt, clay, firm, wet	N/A
70-80	4	NA	70' - 72' Gray silty clay, firm, moist to very moist; 72' – 74' Gray silt, clay, firm, wet; 74'-76' Gray to brown sand fine, medium, coarse, large and gravel subrounded fine, medium, coarse, large, wet	N/A
80-90	9	NA	80'-88' Gray to brown sand fine, medium, coarse, large and gravel subrounded fine, medium, coarse, large, wet; 88'-89' Gray to brown sand fine, medium, coarse, large to sand fine, medium, wet	N/A

WELL NO. WBSP-15-06

2015067 Project Number: Clifty Creek Plant -West Boiler Slag Pond Project Location: Installation Date(s): 11/18/15-11/19/15 Drilling Method: Roto-Sonic Drilling Contractor: Bowser Morner Development Date(s): 12/9/15 Development Method: Submersible Pump Field parameters stabilized. Turbidity = 3.44 NTUs Volume Purged: 100 gallons Static Water-Level* 51.55' Top of Well Casing Elevation: 473.51' Well Purpose: Groundwater Monitoring Northing (Y): 449470.57 Easting (X): 568402.50 Comments/Notes: 2 inch PVC riser and screen 10 ft of 0.010 pre-packed well screen with an inner filter pack of 0.40 mm clean quartz sand and an outer layer of food-grade nylon mesh. Inspector: John Campbell

Protective Casing with Locking Cap Top of Casing Elevation: 473.51 ft. Stick-up: 2.23 ft. Land Surface Elevation: 471.28 Grout; Type: Portland cement/ Grout Borehole Diameter: Casing Diameter: Inch Casing Material: Top of Seal: 69.5 Seal Type: Bentonite Pellets/Chips Top of Sand/Gravel Pack: 73.5 Top of Well Screen Sand/Gravel Pack; Type: Global #5 Screen Diameter: Inch Screen Slot-Size: 0.010 Inch Screen Material: PVC Bottom of Well Screen 85.5 ft.* Base of Borehole: 85.5 ft.* Total Depth of Well Below Top of Casing: 87.73 ft.

*Indicates Depth Below Land Surface

CONSTRUCTION MATERIALS USED:

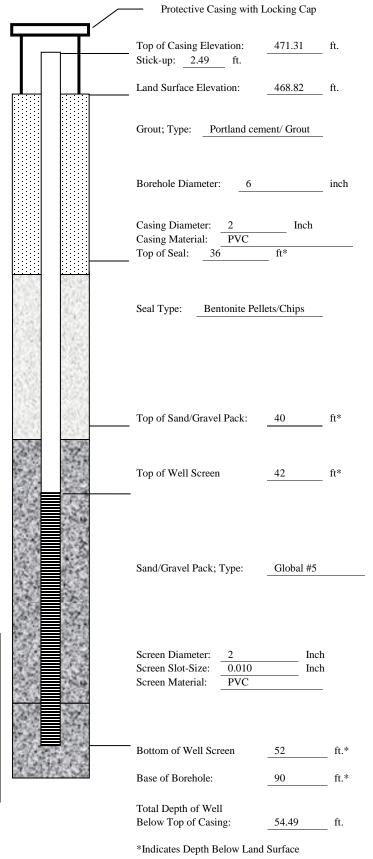
6 Bags of Sand

2 Bags/Buckets Bentonite Pellets

12 Bags Portland for Grout

Bags Concrete/Sakrete

BORING NO. <u>WBSP-15-07</u> SAMPLE/CORE LOG


Project Number:	2015067 Clifty Creek Plant		Log Page	1	of	1		
Project Location:	West Boiler Slag Pond		Drilling Co	ntractor:	Bowser M	orner		
Drilling Date(s):	11/20/15-11/23/15		AGES Geo	logist:	John Camp	bell		
Drilling Method:	Roto-Sonic	Coring Device Size:	NA	Hammer	Wt. NA	A and	Drop _	NA
Sampling Method:	NA	Borehole Diameter:	6"	Drilling	Fluid Used:	Wat	er	
Sampling Interval:	NA	Borehole Depth:	90'	Surface	Elevation:	468	.82' MS	SL
NOTES/COMME	ENTS:							

Depth Interval (feet)	Sample Recovery (feet)	Penetration (Hyd. Pres. or Blow Counts)	Sample/Core Description	PID (PPM)
0-10	10	NA	Silty clay, some sand, some fine gravel, dense, hard, slightly moist. fill	N/A
10-20	8.5	NA	Brown silty clay, sand and gravel, gray 13'-14.5', moist to very moist	N/A
20-30	10	NA	20'-28' Brown with gray silty clay, moist; 28'-30' brown silty clay, some gravel, trace sand, very moist to wet	N/A
30-40	10	NA	30'-34' Gray silt, well compacted, damp; 34'-40' brown silty clay, very hard, damp	N/A
40-50	10	NA	40'-48' Gray silt, some very fine sand lenses, some clay; 48'-50' gray silt, clay, moist	N/A
50-60	10	NA	50'-58' Gray silt, clay, moist; 58'-60' yellow brown silty clay, moist	N/A
60-70	10	NA	60'-64' Gray silt, some sand lenses, some clay; 64'-70' gray silty clay, some roots and organic matter, firm	N/A
70-80	9	NA	70'-78' Gray silty clay, some roots and organic matter, firm; 78'-80' Gray silt, some sand lenses, some clay, wet	N/A
80-90	9	NA	80'-83' Gray sandy silty, clay, wet; 83'-86' gray silty clay, hard, moist; 86'-90' gray sand, silt, wood, wet	N/A
				N/A

P In D D D D Fi T St T W G N C fi la In

roject Number: 2015067					
roject Location:	Clifty Creek Plant – West Boiler Slag Pond				
nstallation Date(s):	11/20/15-11/23/15				
orilling Method: orilling Contractor:	Roto-Sonic Bowser Morner				
evelopment Date(s):	12/16/15				
evelopment Method: ield parameters stabilize urbidity = 2.86 NTUs	Submersible Pump				
olume Purged:	35.5 gallons				
tatic Water-Level* 41.01'					
op of Well Casing Eleva	ation: 471.31'				
Vell Purpose: Froundwater Monitoring Forthing (Y): 448947.93 asting (X): 567946.39					
comments/Notes: inch PVC riser and screen 0 ft of 0.010 pre-packed well screen with an inner lter pack of 0.40 mm clean quartz sand and an outer tyer of food-grade nylon mesh.					
nspector: John Camp	bell				

CONSTRUCTION MATERIALS USED: Bags of Sand Bags/Buckets Bentonite Pellets Bags Portland for Grout 12 Bags Concrete/Sakrete

BORING NO. <u>WBSP-15-08</u> SAMPLE/CORE LOG

Project Number:	2015067 Clifty Creek Plant		Log Page	1	of	1	
Project Location:	West Boiler Slag Pond		Drilling Contractor: Bowser Morner				
Drilling Date(s):	11/24/15-11/25/15		AGES Geol	logist:	John Campbe	ell	
Drilling Method:	Roto-Sonic	Coring Device Size:	NA	Hammer	Wt. NA	and Drop NA	
Sampling Method:	NA	Borehole Diameter:	6"	Drilling	Fluid Used:	Water	
Sampling Interval:	NA	Borehole Depth:	80'	Surface	Elevation:	468.56' MSL	
NOTES/COMMI	ENTS:						

Depth Interval (feet)	Sample Recovery (feet)	Penetration (Hyd. Pres. or Blow Counts)	Sample/Core Description	PID (PPM)
0-10	8	NA	Brown silty clay, some sand and gravel, damp, fill	N/A
10-20	9	NA	Brown silty clay, firm, damp to moist	N/A
20-30	7	NA	Brown silty clay, firm, moist	N/A
30-40	10	NA	30'-37' Brown silty clay, firm, moist; 37'-40' gray clay, stiff, slightly plastic, very moist	N/A
40-50	9	NA	40'-44.5' Gray clay, stiff, slightly plastic, very moist; 44.5'-50' Gray silt, clay, some very fine sand, wet	N/A
50-60	10	NA	50'-59' Gray silt, clay, some very fine sand, wet; 59'-60' gray silty clay, moist	N/A
60-70	8.5	NA	Gray silty and silty clay lenses intermittent, wet	N/A
70-80	9	NA	70'-76' Gray silty and silty clay lenses intermittent, wet; 76'-79' gray silty clay, firm, moist	N/A
				N/A

2015067 Project Number: Clifty Creek Plant -West Boiler Slag Pond Project Location: Installation Date(s): 11/24/15-11/25/15 Drilling Method: Roto-Sonic Drilling Contractor: Bowser Morner Development Date(s): 12/16/15 Development Method: Submersible Pump Field parameters stabilized. Turbidity = 4.96 NTUs Volume Purged: 89.5 gallons Static Water-Level* 37.02 Top of Well Casing Elevation: 471.06' Well Purpose: Groundwater Monitoring Northing (Y): 448625.46 Easting (X): 567343.24 Comments/Notes: 2 inch PVC riser and screen 10 ft of 0.010 pre-packed well screen with an inner filter pack of 0.40 mm clean quartz sand and an outer layer of food-grade nylon mesh. Inspector: John Campbell

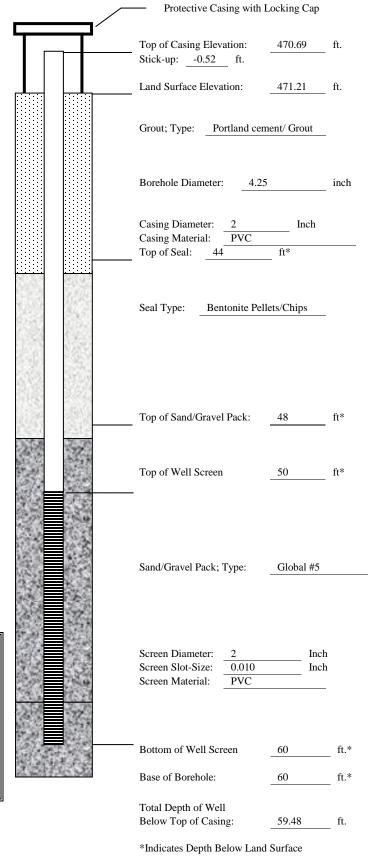
Protective Casing with Locking Cap Top of Casing Elevation: 471.06 ft. Stick-up: 2.5 ft. Land Surface Elevation: 468.56 Grout; Type: Portland cement/ Grout Borehole Diameter: Casing Diameter: Inch Casing Material: Top of Seal: 46.5 Seal Type: Bentonite Pellets/Chips Top of Sand/Gravel Pack: 50.5 Top of Well Screen Sand/Gravel Pack; Type: Global #5 Screen Diameter: Inch Screen Slot-Size: 0.010 Inch Screen Material: PVC Bottom of Well Screen 62.8 ft.* Base of Borehole: ft.* Total Depth of Well Below Top of Casing: 65.3 ft.

*Indicates Depth Below Land Surface

Bags of Sand Bags/Buckets Bentonite Pellets 12 Bags Portland for Grout

CONSTRUCTION MATERIALS USED:

Bags Concrete/Sakrete


Y:\Shared\PROJECTS_PROGRAMS - IKEC\Clifty Creek - CCR Program\Reports\CCR MW Installation Rept\Appendices\App B Boring & Well Logs\WBSP-15-08 Well Log.docx

Project Number:	2015067 Clifty Creek Plant		Log Page	1	of1	<u>. </u>
Project Location:	West Boiler Slag Pond		Drilling Co	ntractor:	Bowser Morne	er
Drilling Date(s):	1/5/16-1/6/16		AGES Geo	logist:	Mike Gelles	
Drilling Method:	HSA	Coring Device Size:	NA	Hammer	Wt. 160lb.	and Drop 2ft
Sampling Method:	NA	Borehole Diameter:	4.25"	Drilling	Fluid Used:	Water
Sampling Interval:	NA	Borehole Depth:	60'	Surface	Elevation:	471.21' MSL
NOTES/COMMI	ENTS:					

Depth Interval (feet)	Sample Recovery (feet)	Penetration (Hyd. Pres. or Blow Counts)	Sample/Core Description	PID (PPM)
0-30			Advance augers – no samples	N/A
30-32	1	4-5-7-8	Orange brown silty clay, trace fine sand, stiff, moist	N/A
32-34	1.2	3-6-8-9	Orange brown silty clay, trace fine sand, stiff, moist	N/A
34-36	1.8	3-5-8-7	Orange brown silty clay, trace fine sand, stiff, moist	N/A
36-38	1	2-3-5-7	Orange brown silty clay, trace fine sand, stiff, moist	N/A
38-40	1.6	2-3-4-6	Orange brown silty clay, trace fine sand, stiff, moist	N/A
40-42	1.5	3-3-5-6	Orange brown silty clay, trace fine sand, stiff, moist; to gray last 8"	N/A
42-44	2	3-5-7-8	42'-43' Orange brown silty clay, trace fine sand, stiff, moist; 43'-44' Gray silty clay, stiff, moist	N/A
44-46	2	3-4-4-4	44'-44.5' Gray silty clay, stiff, moist; 44.5'-46' gray silty fine sand, moist	N/A
46-48	2	1-2-2-3	46'-46.5' Gray silty fine sand, moist; 46.5'-48' gray silty clay, fine sand, stiff, plastic, moist	N/A
48-50	2	3-4-4-4	48'-49' Gray silty clay, fine sand, stiff, plastic, moist; 49'-50' Orange brown sandy clay fine, stiff, wet	N/A
50-52	2	2-4-4-4	Gray brown sandy silt, fine sand seams, wet	N/A
52-54	2	2-2-3-5	Orange brown sandy silt, fine sand seams, wet	N/A
54-56	2	3-4-5-6	Gray brown sandy silt, fine sand seams, wet	N/A
56-58	2	2-2-2-2	Gray brown sandy silt, fine sand seams, wet	N/A
58-60	2	2-2-3-3	Gray brown sandy silt, fine sand seams, wet	N/A
				N/A

2015067 Project Number: Clifty Creek Plant -West Boiler Slag Pond Project Location: Installation Date(s): 1/5/16-1/6/16 Drilling Method: Hollow Stem Auger Drilling Contractor: Bowser Morner Development Date(s): 1/19/16 Development Method: Submersible Pump Field parameters stabilized. Turbidity = 3.57 NTUs Volume Purged: 74.5 gallons Static Water-Level* 38.52 Top of Well Casing Elevation: 470.69' Well Purpose: Groundwater Monitoring Northing (Y): 448359.31 Easting (X): 566711.13 Comments/Notes: 2 inch PVC riser and screen 10 ft of 0.010 pre-packed well screen with an inner filter pack of 0.40 mm clean quartz sand and an outer layer of food-grade nylon mesh. Inspector: Michael Gelles

CONSTRUCTION MATERIALS USED: Bags of Sand Bags/Buckets Bentonite Pellets 10 Bags Portland for Grout Bags Concrete/Sakrete

BORING NO. <u>WBSP-15-10</u> SAMPLE/CORE LOG

Project Number:	2015067 Clifty Creek Plant		Log Page	1	of1	<u>. </u>
Project Location:	West Boiler Slag Pond		Drilling Co	ntractor:	Bowser Morne	er
Drilling Date(s):	1/4/16-1/5/16		AGES Geo	logist:	Mike Gelles	
Drilling Method:	HSA	Coring Device Size:	NA	Hammer	Wt. 160lb.	and Drop 2ft
Sampling Method:	NA	Borehole Diameter:	4.25"	Drilling 1	Fluid Used:	Water
Sampling Interval:	NA	Borehole Depth:	56'	Surface I	Elevation:	471.21' MSL
NOTES/COMMI	ENTS:					

Depth Interval (feet)	Sample Recovery (feet)	Penetration (Hyd. Pres. or Blow Counts)	Sample/Core Description	PID (PPM)
0-30			Advance augers – no samples	N/A
30-32	1.5	4-8-10-11	Orange brown silty clay, trace fine sand, stiff, moist	N/A
32-34	2	4-7-9-12	Orange brown silty clay, trace fine sand, stiff, moist	N/A
34-36	1.5	4-8-10-10	Orange brown silty clay, trace fine sand, stiff, moist	N/A
36-38	1.6	4-4-5-7	36'-37' Orange brown silty clay, trace fine sand, stiff, moist; 37'-38' brown gray sandy silt, moist	N/A
38-40	2	3-3-4-4	Brown gray silty clay, stiff, moist	N/A
40-42	2	2-2-3-3	Brown gray silty clay, stiff, moist	N/A
42-44	2	2-2-3-3	Orange brown sandy clay, stiff, plastic, moist	N/A
44-46	2	1-1-2-1	Orange brown sandy clay, stiff, plastic, moist; with 3"-4" fine and medium sand seams, wet	N/A
46-48	2	1-1-1-2	Brown gray sandy clay, stiff, plastic, moist; fine and medium sand seams, wet	N/A
48-50	1	1-2-2-3	Brown gray silty clay, fine sand, wet	N/A
50-52	1.6	2-2-3-4	Brown gray silty clay, fine sand, wet	N/A
52-54	1	1-2-2-3	Brown gray silty clay, fine sand, wet	N/A
54-56	2	1-2-2-2	Brown gray silty clay, fine sand, wet	N/A
				N/A
				N/A
				N/A

2015067 Project Number: Clifty Creek Plant -West Boiler Slag Pond Project Location: Installation Date(s): 1/4/16-1/5/16 Drilling Method: Hollow Stem Auger Drilling Contractor: Bowser Morner Development Date(s): 1/20/16 Development Method: Submersible Pump Field parameters stabilized. Turbidity = 3.59 NTUs Volume Purged: 58.5 gallons Static Water-Level* 39.28 Top of Well Casing Elevation: 470.69' Well Purpose: Groundwater Monitoring Northing (Y): 448125.51 Easting (X): 566225.21 Comments/Notes: 2 inch PVC riser and screen 10 ft of 0.010 pre-packed well screen with an inner filter pack of 0.40 mm clean quartz sand and an outer layer of food-grade nylon mesh. Inspector: Michael Gelles

Protective Casing with Locking Cap Top of Casing Elevation: 470.69 ft. Stick-up: -0.52 ft. Land Surface Elevation: 471.21 Grout; Type: Portland cement/ Grout Borehole Diameter: 4.25 inch Casing Diameter: Inch Casing Material: Top of Seal: Seal Type: Bentonite Pellets/Chips Top of Sand/Gravel Pack: Top of Well Screen Sand/Gravel Pack; Type: Global #5 Screen Diameter: Inch Screen Slot-Size: 0.010 Inch Screen Material: PVC Bottom of Well Screen 56 ft.* ft.* Base of Borehole: 56 Total Depth of Well Below Top of Casing: 55.48 ft. *Indicates Depth Below Land Surface

CONSTRUCTION MATERIALS USED:

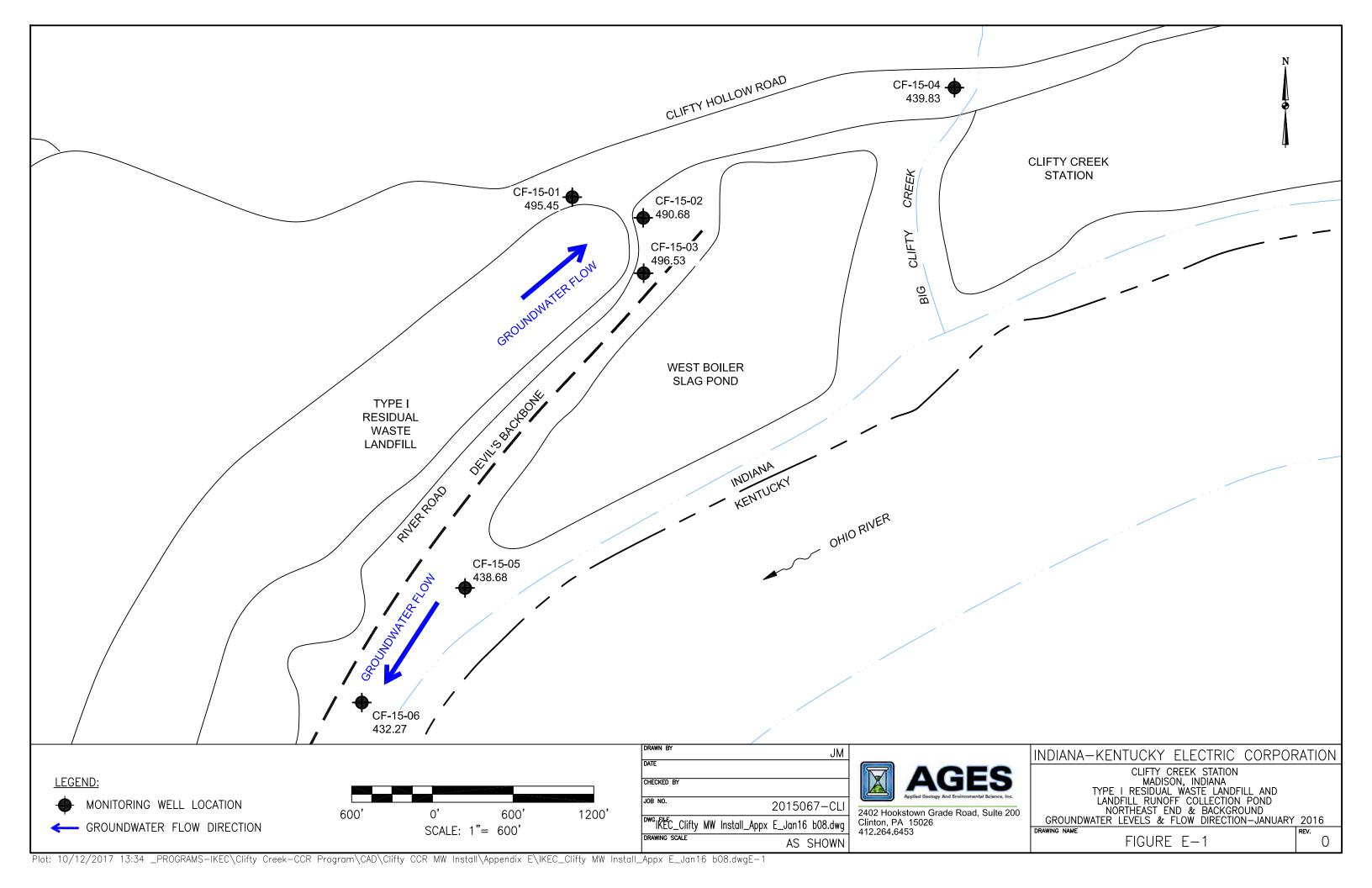
8.5 Bags of Sand

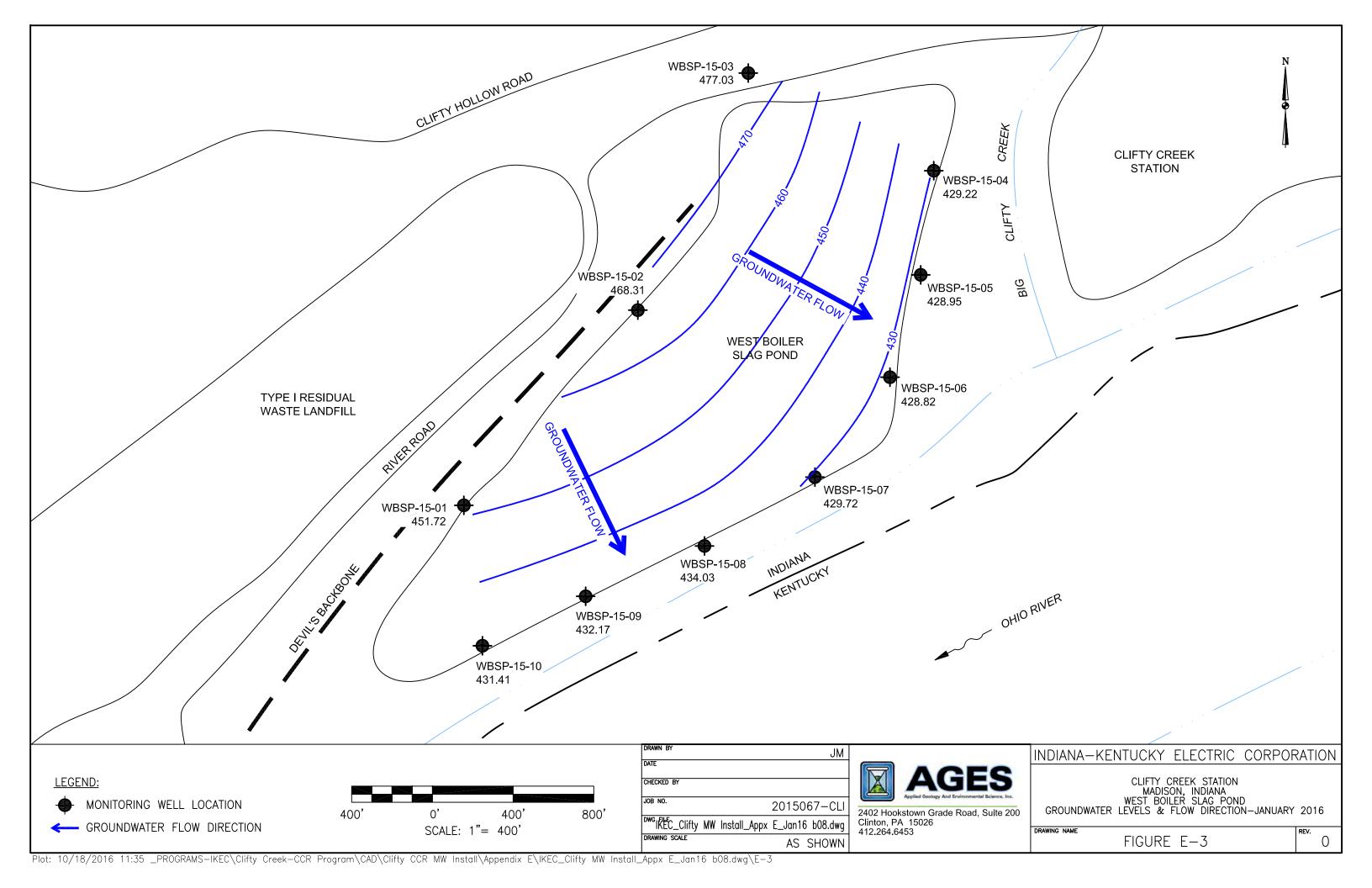
2 Bags/Buckets Bentonite Pellets

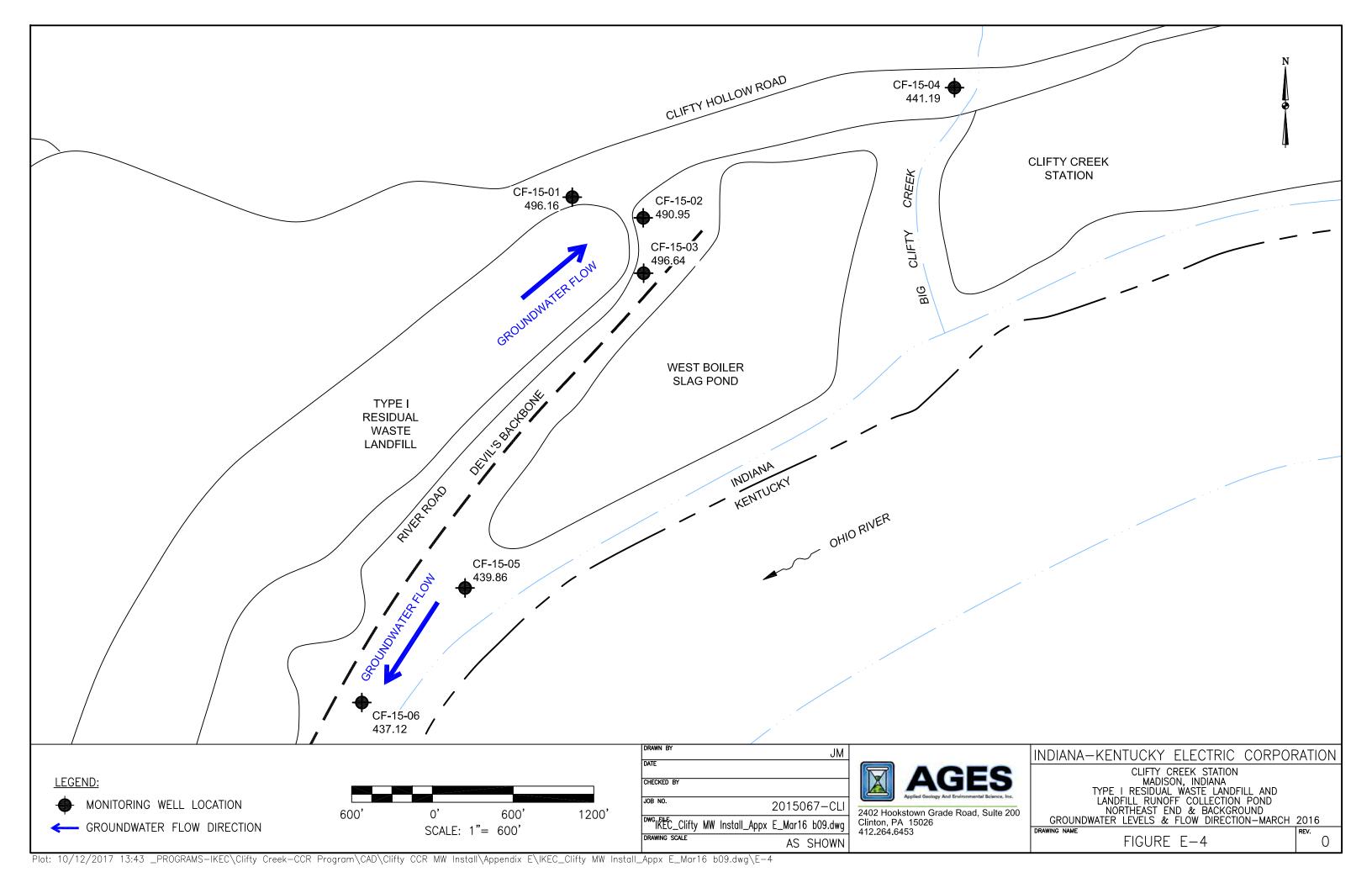
10 Bags Portland for Grout

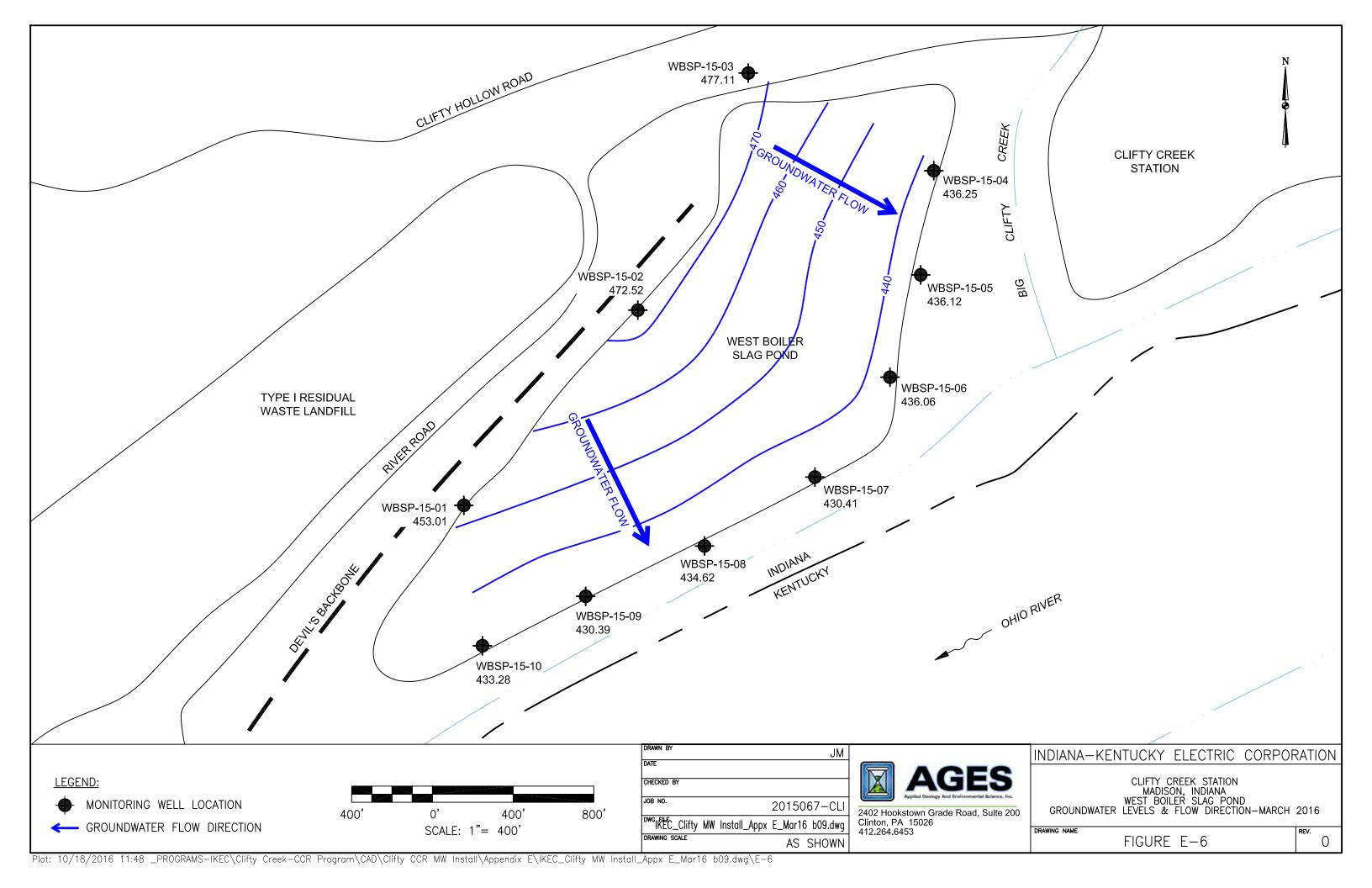
Bags Concrete/Sakrete

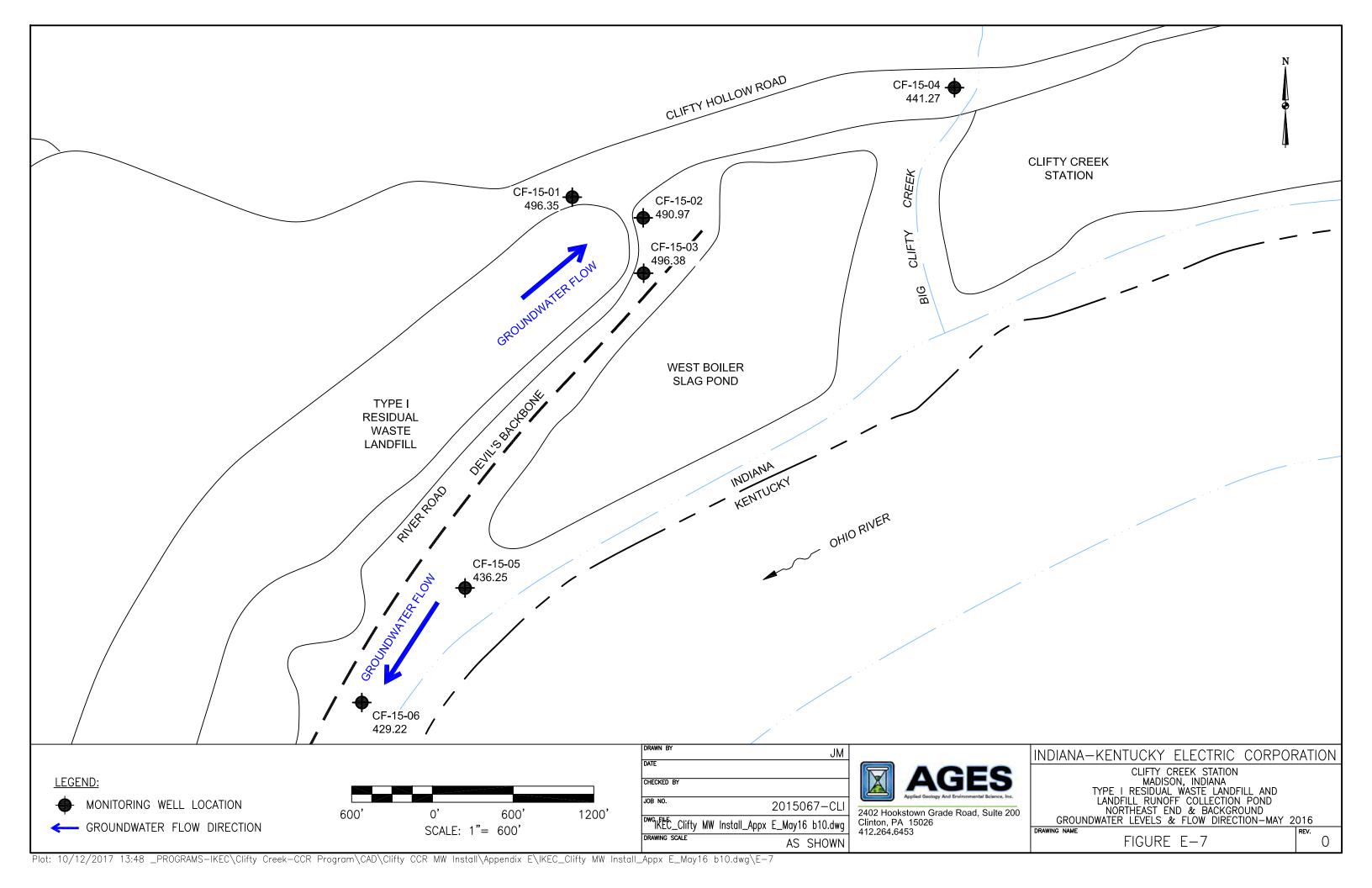
APPENDIX D

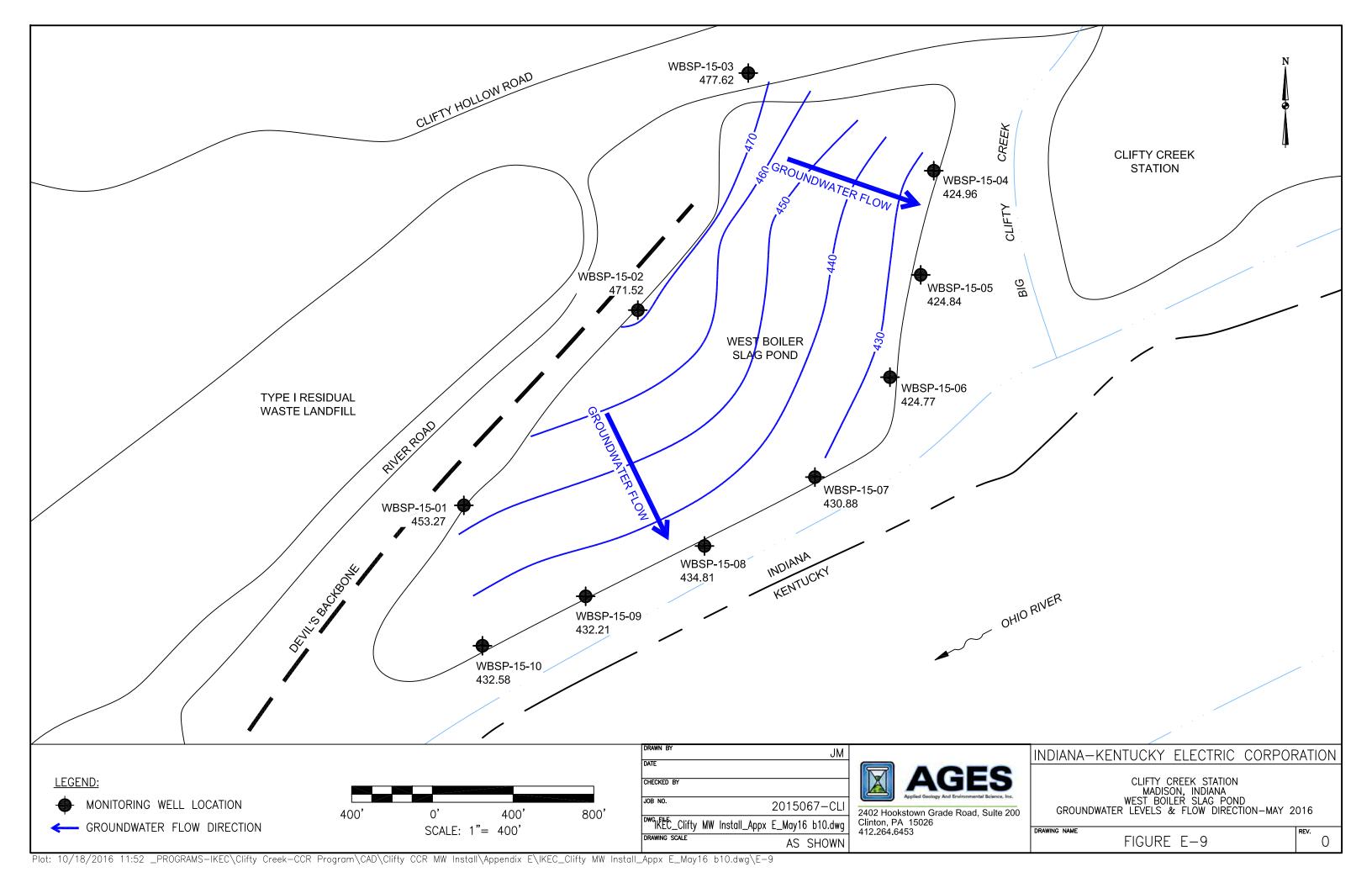

GROUNDWATER LEVELS January 2016 through May 2016

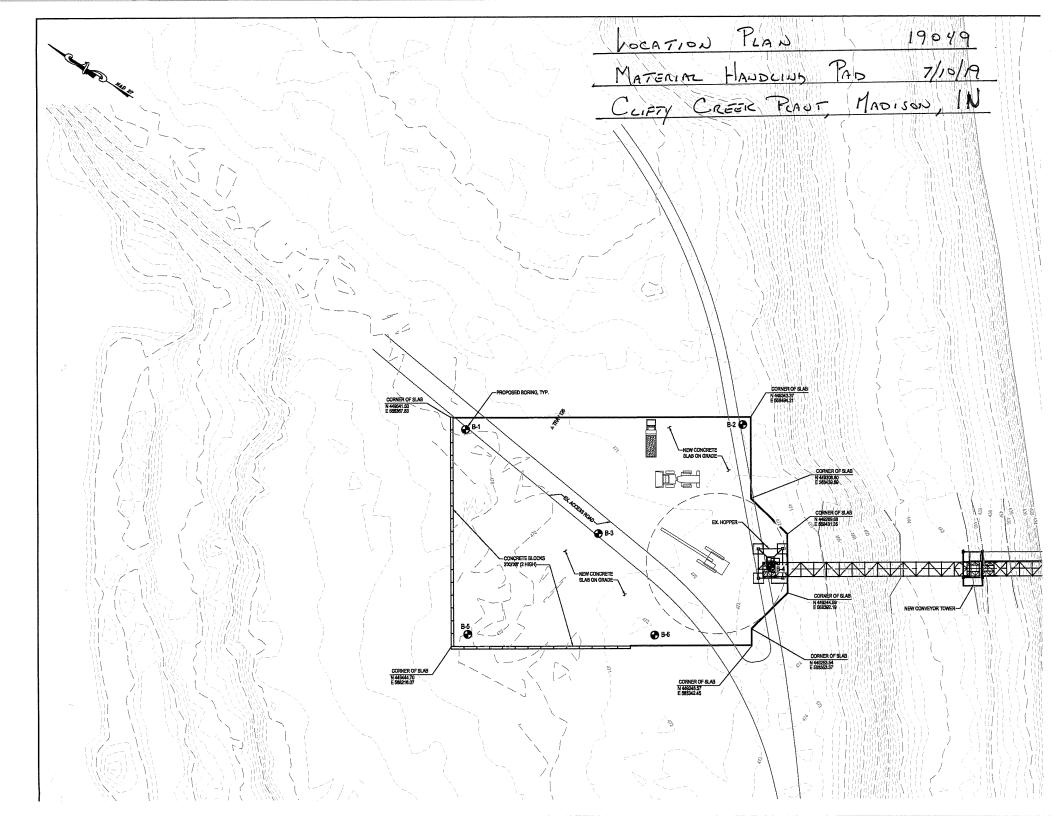

TABLE D-1 CLIFTY CREEK CREEK PLANT SUMMARY OF GROUNDWATER ELEVATION DATA JANUARY 2016 - MAY 2016

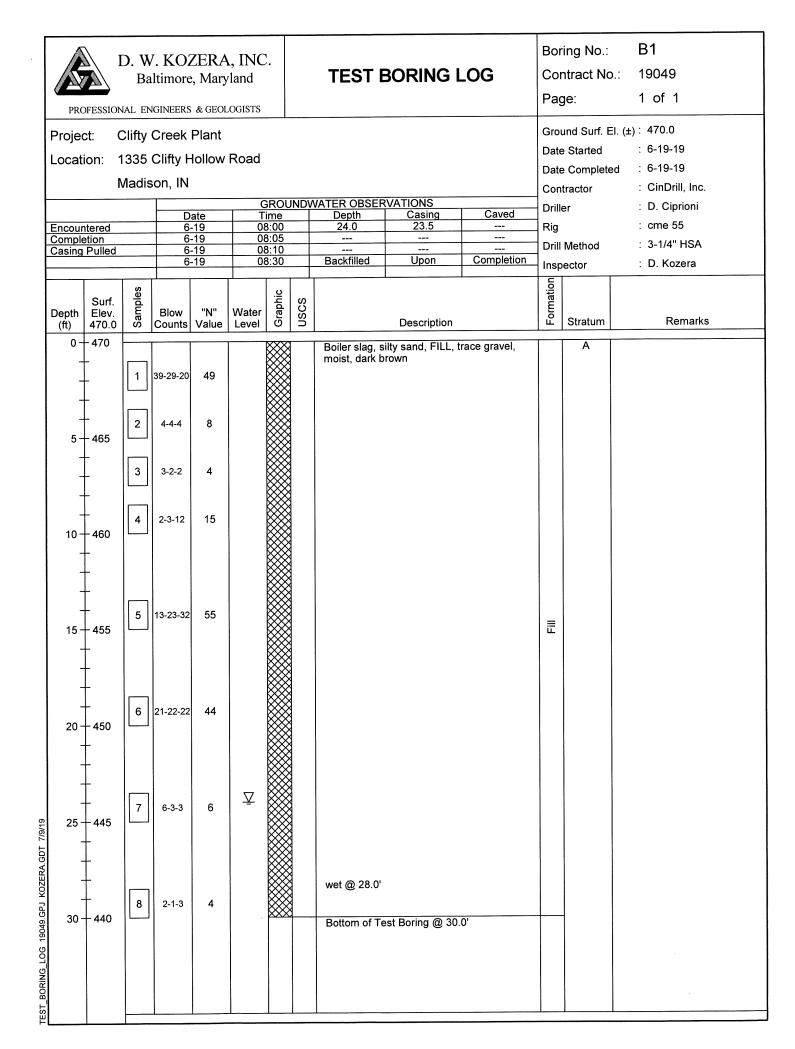

Monitoring Well Designation	Jan-16 Groundwater Elevation (ft)	Mar-16 Groundwater Elevation (ft)	May-16 Groundwater Elevation (ft)									
C	LANDFILL AND LANDFILL RUNOFF COLLECTION POND											
CF-15-01	495.45	496.16	496.35									
CF-15-02	490.68	490.95	490.97									
CF-15-03	496.53	496.64	496.38									
CF-15-04	439.83	441.19	441.27									
CF-15-05	438.68	439.86	436.25									
CF-15-06	432.27	437.12	429.22									
CF-15-07	436.61	438.08	437.48									
CF-15-08	439.48	440.54	440.88									
CF-15-09	450.77	451.58	450.69									
WEST BOILER SLAG	POND											
WBSP-15-01	451.72	453.01	453.27									
WBSP-15-02	468.31	472.52	471.52									
WBSP-15-03	477.03	477.11	477.62									
WBSP-15-04	429.22	436.25	424.96									
WBSP-15-05	428.95	436.12	424.84									
WBSP-15-06	428.82	436.06	424.77									
WBSP-15-07	429.72	430.41	430.88									
WBSP-15-08	434.03	434.62	434.81									
WBSP-15-09	432.17	430.39	432.21									
WBSP-15-10	431.41	433.28	432.58									

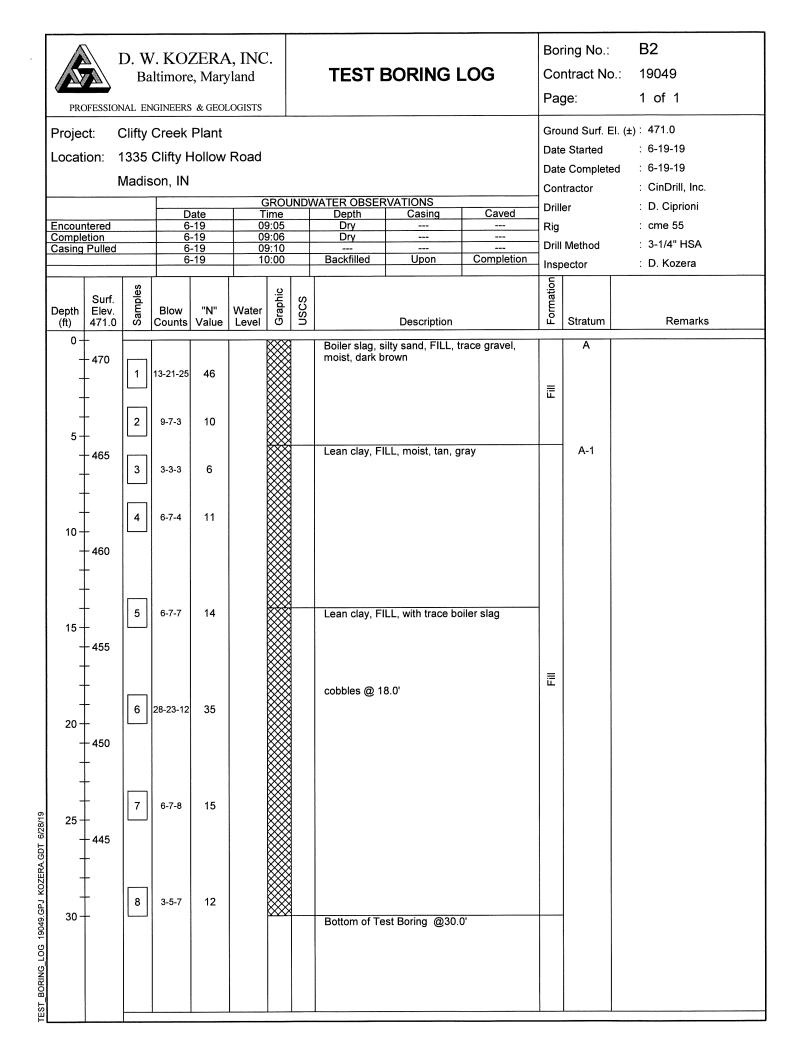

APPENDIX E

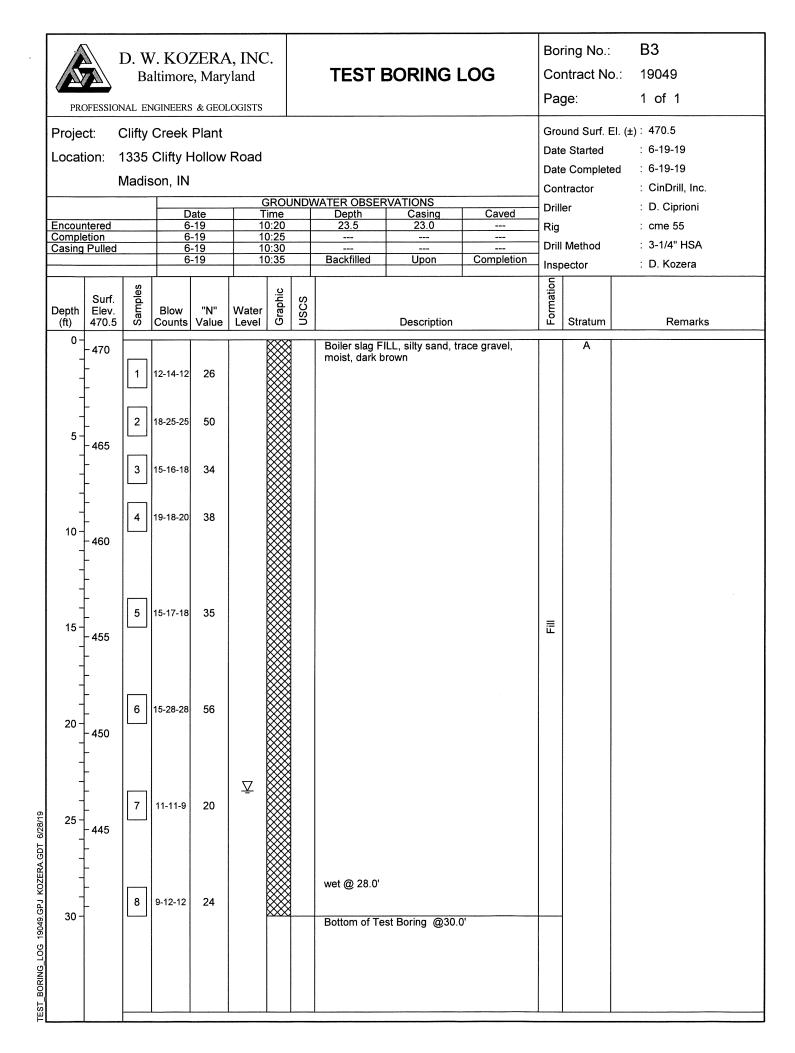

GROUNDWATER CONTOUR MAPS January 2016 through May 2016



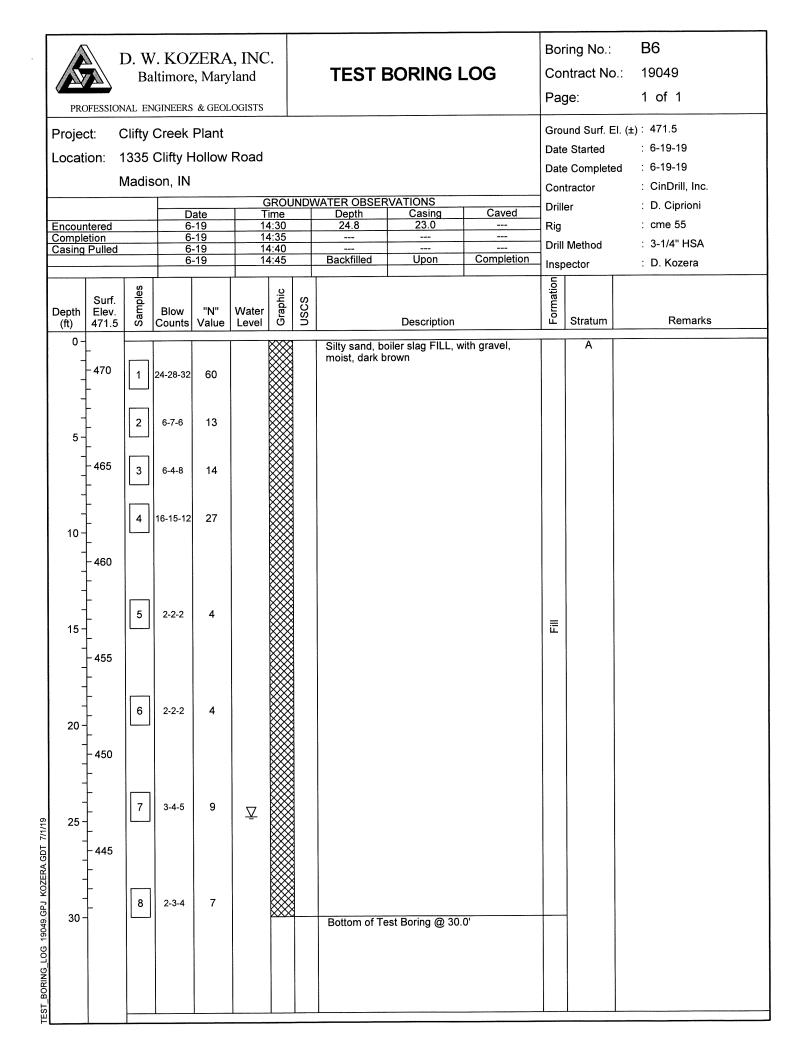









Kozera (2019)



D. W. KOZERA, INC. Baltimore, Maryland PROFESSIONAL ENGINEERS & GEOLOGISTS							TEST BORING LOG					ing No.: ntract No ge:	1 of 1
Project: Clifty Creek Plant Location: 1335 Clifty Hollow Road Madison, IN												und Surf. E Started Complete tractor	il. (±): 470.0 : 6-19-19 id : 6-19-19 : CinDrill, Inc.
Encountered Completion Casing Pulled		Date 6-19 6-19 6-19 6-19		GRC Time 13:30 13:35 13:40 13:45		23.5		Casing 23.5 Upon	Caved Completion	Insp	er Method ector	: D. Ciprioni : cme 55 : 3-1/4" HSA : D. Kozera	
Depth (ft)	470.0	Samples	Blow Counts	"N" Value	Water Level	Graphic	nscs		Description		Formation	Stratum	Remarks
0	+470 +	1 6-4-6 10						Lean clay, FI brown	LL, with silty sar	nd, moist, dark		A-1	
5	+ + 465	2	3-4-6	10									
	†	3	3-4-3	7			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						
10	460	4	2-1-3	4									
15	+ + + 5 + 455 +	5	2-1-3	4							H		
20	+ + 0 + 450 +	6	11-13-16	29				Silty sand, be dark brown	oiler slag FILL, v	vith gravel,			
2.GDT 7/1/19	+ + 5 + 445 +	7	19-14-9	23	Δ								
EST_BORING_LOG 19049.GPJ KOZERA.GDT 7/1/19 SS	+ + 0 + 440	8	5-4-4	8				Bottom of Te	est Boring @ 30.	0'			

APPENDIX B - BORING INFORMATION

Boring Logs

Well Construction Logs

Soil Classification Sheet

Rock Classification Sheet

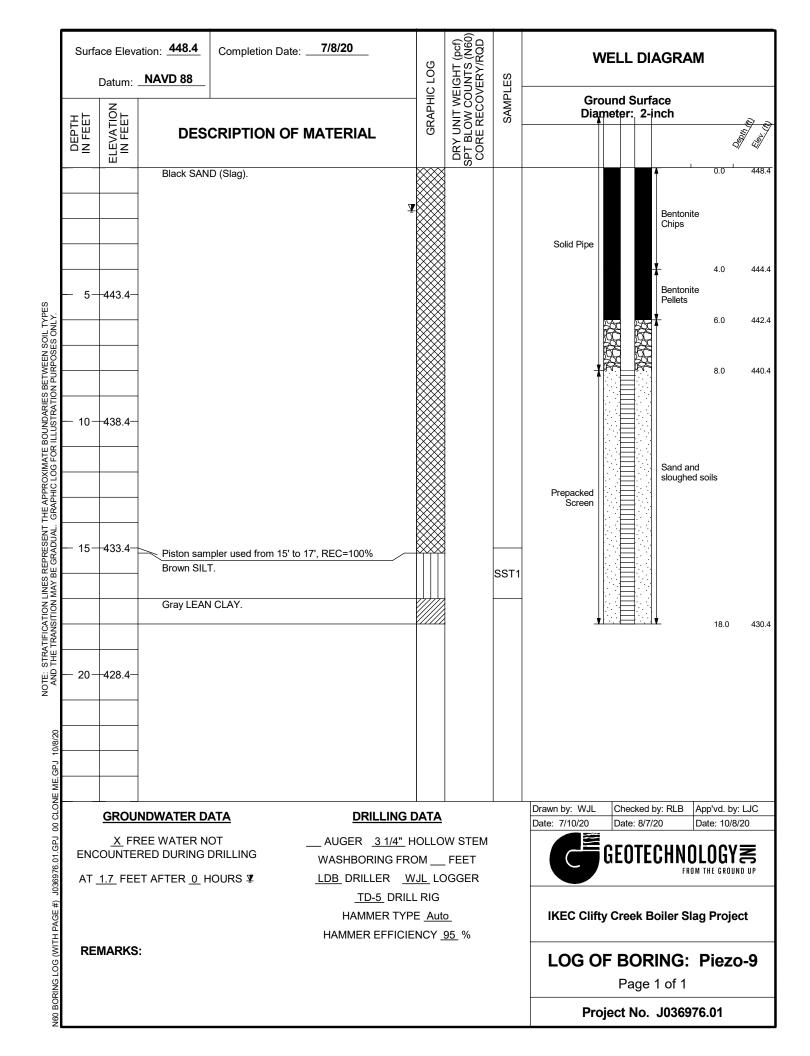
	Surfa	ace Elev	ation: <u>475.4</u>	Completion Date: 6/30/20	g	T (pcf) S (N60) //RQD		SH l Δ - UU/2	EAR STRENGTH O - QU/2	l , tsf □ - SV	
			NAVD 88		GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	0,5 1,0 1,5 2,0 2,5 STANDARD PENETRATION RESISTANCE ▲ N-VALUE (BLOWS PER FOOT) (ASTM D 1586)			
	DEPTH IN FEET	ELEVATION IN FEET	DES	CRIPTION OF MATERIAL	98	BLO'N		W/	ATER CONTENT	·, %	
						SPT		PL 10 2	20 30 4	0 50 LL	
				t dense SAND and GRAVEL (Fill).		5-16-36	004				
			Reddish br	rown moist very dense SAND.		(82)	SS1		REC=100%		
			Gray moist	t medium dense GRAVEL, traces of sand	- 8×27 ×	3					
		and lean clay.				6-15-7					
						(35)	SS2	•	ŘÉC=100%		
m	 5-	470.4	Interbedde	ed olive brown and gray moist extremely	- 1//	19-50/2"	SS3		· · REC=88%		
CATION LINES REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN SOIL TYPES NSITION MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.			weak highly	y weathered SHALE and gray medium ery strong LIMESTONE (Bedrock).		10 00/2	000				
SOILT			Interbedde	ed gray extremely weak to very weak fissile	- 🚟						
EN S			SHALE and	d light gray medium strong to very strong NE. This interval is comprised of approx.							
PUR			91% shale	in up to 12" thick beds and approx. 9%							
ES BE			Formation)	in up to 1/2" thick beds (Dillsboro).		93% 35%	NQ4				
JARII	10	465.4	Interbedde	ed to irregularly bedded light gray to gray rong to very strong fine to coarse-grained		1					
OUN	10	405.4	crvstalline	LIMESTONE and gray extremely weak to		1					
TE B			81% limest	LE. This interval is comprised of approx. tone in up to 5" thick beds and approx.							
XIMA OG F			19% shale Formation)	in up to 1-1/4" thick beds (Dillsboro		_					
PRO				,							
IE AP						100%					
늘						76%	NQ5				
ESE ADU/	 15-	 -460.4-				1					
ZEPR E GR											
VES F AY BI			Crystallized	d mineral filled vug at 15.8'.							
Z Z											
SITIC											
TER											
STRATIFION THE TRAIN											
NOTE: S AND 1	— 20 –	455.4									
NO.											
20											
10/8/20											
GPJ											
ME											
LONE		00011	NDWATER R	474	0.0474			Drawn by: RLB	Checked by: WJL	App'vd. by: LJC	
00 CL		GROU	NDWATER DA	ATA DRILLING	<u>G DATA</u>			Date: 7/5/20	Date: 8/7/20	Date: 10/8/20	
.GPJ	- FNIO		REE WATER N		'_ HOLLC	W STEM			CENTECUM	nı nev=	
76.01	ENC	OUNTE	RED DURING I	WASHBORING F	ROM	FEET			GEOTECHN	ULUUT	
1036976.01				<u>LDB</u> DRILLER		OGGER				om the another of	
· #				<u>TD-5</u> DF							
PAGE				HAMMER T				IKEC Clifty	y Creek Boiler S	lag Project	
WITH P			. 0	HAMMER EFFIC	CIENCY _	95_%					
§ ⊗		MARKS ring bad	: Core water ckfilled with c	r at 3.4' at completion. cement-bentonite grout.				LOG	OF BORIN	G: B-1	
07 5]								Page 1 of 1		
N60 BORING LOG											
N60 B								Pro	ject No. J0369	76.01	

		451.0	Completion Date: 6/30/20		() () () () ()		SHI	EAR STRENGTH	l, tsf
Sı	urface Elev	ation: <u>451.0</u>	Completion Date:6/30/20	(2)	9 % & A		∆ - UU/2	○ - QU/2	□ - SV
	Datum:	NAVD 88		P	F N N	S	0 _. 5 1	0 1,5 2	2.0 2.5
						SAMPLES	STANDARD I	PENETRATION	RESISTANCE
l ±	- Š			GRAPHIC LOG	NEC SEC	SAN	_ N-V/	LUE (BLOWS PE (ASTM D 1586)	
DEPTH	IN FEET IN FEET	DES	SCRIPTION OF MATERIAL	5	P.C.		W	ATER CONTENT	г. %
					DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD		PL	•	10 50 LL
		Brown an	d black moist medium dense SAND (Slag).		8-11-10				İ
		1			(33)	SS1		Å	
				💹					
		Interbedd weak high		9-12					
		strong to	very strong LIMESTONE (Bedrock).		-50/3"	SS2			
					()			REC=67%	
	5 -44 6.0-							REC=100%	
					50/1"	SS3			
j									
								REC=100%	
		Interbedd	ed to irregularly bedded gray extremely	¥/^>	50/1"	SS4			
		strong to	veak SHALE and light gray to gray medium very strong LIMESTONE. This interval is						
		comprise	d of approx. 57% shale in partings to 2" s and approx. 43% limestone in up to 2.5"		<u>90%</u> 51%	NQ5			
	0 441.0		s (Dillsboro Formation).		3170				
			dium strong to very strong LIMESTONE		Ī				
<u> </u>		with shale	e partings (Dillsboro Formation).		1				
5					4000/				
					100% 93%	NQ6			
- 1	5 436.0	-]				
-					Ī				
]				
L 2	0 431.0-								
2									
2		_							
		-							
5									
i									
<u>-</u>							Drawn by: RLB	Checked by: WJL	App'vd. by: LJC
; 3	GROU	NDWATER I	DATA DRILLIN	G DATA			Date: 7/5/20	Date: 8/7/20	Date: 10/8/20
KING LOG (WITH PACE #) JUGGS 40.01.GFJ UU OLUNE MELGPJ 10/07/20		REE WATER I		"_ HOLLC	W STEM			PEUTEUIN	01 00V ⇒
E	NCOUNTE	RED DURING	WASHBURING					GEOTECHN	ULULY &
			<u>LDB</u> DRILLER		OGGER				וווג מוטטאט טר
			<u>TD-5</u> DI						
			HAMMER T				IKEC Clifty	Creek Boiler S	lag Project
_ ا	DER4 5:50		HAMMER EFFI	CIENCY	<u>95</u> %				
	κ⊑MARKS Bore hole	collapsed be	er at 2.0' at completion. efore backfilling.				LOG	OF BORIN	G: B-3
								Page 1 of 1	
Ę								. 490 101 1	

Project No. J036976.01

Surfa	ace Flev	ation: 466.1	Completion Date: 6/30/20		ocf) 20()			EAR STRENGTH		
			Completion Date.	_ ည	7 S (7 Y/R)		Δ - UU/2	○ - QU/2	□ - SV	
	Datum:	NAVD 88		1010	PEEE	LES			2.5	
—— · -	N O H		I	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60 CORE RECOVERY/RQD	SAMPLES	N-VA	PENETRATION LUE (BLOWS PE (ASTM D 1586)	R FOOT)	
IN FEET	LEVATION IN FEET	DES	CRIPTION OF MATERIA	rr g	Y UN BLO' RE R	0)	WATER CONTENT, %			
					DR SPT CO		PL 10 2	20 30 4	10 50 LL	
		Brown and gravel (Fill)	black moist medium dense SAND, i	trace	1-6-12 (29)	SS1		REC=67%		
		Brown and	gray moist dense SAND and GRAV	, <u>-</u> ,						
		with large of	concrete fragments (Fill). drilling from 3.0' to 5.0'.		7-30 -50/0"	SS2		REC=33%		
		,	g		()					
4	61.1–	Brown moi	st very loose SAND, trace concrete							
_		n agments	ι					REC=33%		
		-								
		-			1-1-3	SS4				
					(6)	334		REC=28%		
_	456.1									
	+30.1 ⁻		ce black, moist dense SAND (Fill/Sla	ag).	6-30 -50/1"	SS5		REC=55%.		
		Very rough	drilling from 11.0' to 12.5'.		()					
l		ļ								
		-								
		-								
-	451.1-	_								
t		1								
		-								
	446.1									
_		1								
		_								
_		NIDIA/ATED D	ATA		<u> </u>	1	Drawn by: RLB	Checked by: WJL	App'vd. by: LJC	
	GROU	NDWATER D	<u>AIA</u> <u>DF</u>	RILLING DATA			Date: 7/5/20	Date: 8/7/20	Date: 10/8/20	
C		REE WATER N RED DURING I	DILL INC	3 1/4" HOLLO				GEOTECHN	UIUCV≅	
_	J J. 11 L	201111101	WASHBO	RING FROM LLER <u>WJL</u> LO					OLUUI () Rom the ground up	
				D-5 DRILL RIG	JUULK					
				IMER TYPE Aut	<u>o</u>		IKEC Clifty	/ Creek Boiler S	lag Project	
				R EFFICIENCY _			_		- -	
into	pond.	Augers kicke	es of concrete visible on gro	and offset bori	nd on slo ng to the	pe	LOG	OF BORING	6: B-5A	
nor	uı. Bor	mg backtilled	with cement-bentonite grou	ι.				Page 1 of 1		

Project No. J036976.01

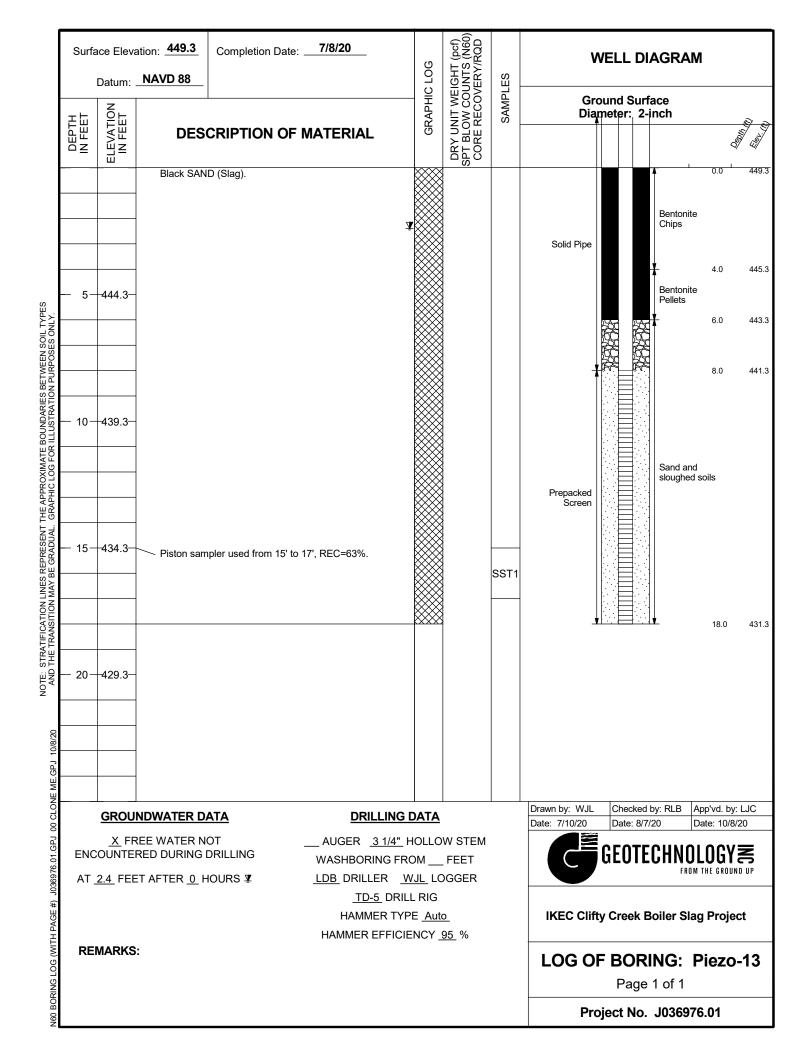

		468.1	Completion Date: 7/1/20		£802		SHI	EAR STRENGTH	l, tsf
Surf	face Eleva	ation: <u>468.1</u>	Completion Date: 7/1/20	ڻ ا	S (P C)		∆ - UU/2	○ - QU/2	□ - SV
	Datum:	NAVD 88		1000	- - - - - - - - - - - - - - - - - - -	ES			0 2,5
돌 발	ELEVATION IN FEET			GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	STANDARD	PENETRATION I LUE (BLOWS PE (ASTM D 1586)	RESISTANCE R FOOT)
DEPTH IN FEET	EVA FEVA	DES	CRIPTION OF MATERIAL	٥	3Y U PBL ORE		PL I	ATER CONTENT	[·] , % ────────────────────────────────────
					F P S		10 2	20 30 4	0 50
		Overburde	n (Refer to Boring B-5A).						
		Pough drill	ing hadinning at 2.0!						
		- Rough unii	ing beginning at 3.0'.						
 5-	463.1								
 10-	458.1	Brown trac	ce black, moist very dense SAND	- 💥					00
		(Fill/Slag)	3 5.43.1,		18-36-27 (100)	SS5			63
						 		REC=67%	
		Transitions	to medium dense.						
					3-6-6 (19)	SS6			
					(10)			REC=83%	
— 15-	453.1								
					5-6-6 (19)	SS7			
					(10)			REC=67%	
		Brown, trac	ce gray, moist stiff LEAN CLAY.	- <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>					
— 20-	 4 48.1–								
					3-7-7	SS8			
					(22)			REC=89%	
		Brown mois	st stiff LEAN CLAY.	- <i>\ </i>					
	GROU	NDWATER DA	ATA DRILLING	DATA			Drawn by: RLB Date: 7/5/20	Checked by: WJL Date: 8/7/20	App'vd. by: LJC Date: 10/8/20
			AUGER <u>3 1/4"</u>		W STEM		45		
ΕN	NCOUNT	ERED AT <u>41</u> I						GEOTECHNI	OLOGY롱
		ET AFTER <u>0</u> H							OM THE GROUND UP
			<u>TD-5</u> DR	ILL RIG					
			HAMMER TY				IKEC Clifty	y Creek Boiler S	lag Project
5-		Defent- D	HAMMER EFFIC	IENCY _	<u>95</u> %				
KE	INIAKKS oring bac	: Keter to Bookfilled with c	oring B-5A for top of profile. ement-bentonite grout.				LOG (OF BORING	6: B-5B
	=		-					Page 1 of 2	
RE Bo							Dro	ject No. J0369	76 01
							1 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,, J.U.

		ation: <u>468.1</u>	Completion Date: 7/1/20	90	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	ပ္သ	Δ - UU/2	EAR STRENGTH ○ - QU/2 1,0 1,5 2	l, tsf □ - SV .,0 2,5
				GRAPHIC LOG	W COU	SAMPLES	STANDARD N-V	PENETRATION ALUE (BLOWS PE (ASTM D 1586)	RESISTANCE R FOOT)
DEPTH IN FEET	ELEVATION IN FEET	DES	CRIPTION OF MATERIAL	9	DRY UN SPT BLO CORE F		∣ PL	ATER CONTENT	T, %
		Brown mois	st stiff LEAN CLAY. (continued)		0,	ST9			3.25
								REC=100%	•
		Transitions	to soft to medium stiff.						
20	400.4								
30 _	438.1-	Augers adv	ance very easily from 30' to 35'.		WOH-1-2 (5)	SS10	X :::0::::		
								REC=100%	
		Gray very r trace sand.	noist soft to medium stiff LEAN CLAY,						
		indoc sand.							
— 35 –	 4 33.1–								
		-				ST11	· · · · <u>/</u> 10 · · · ·	REC=100%	
		Gray very r	noist soft silty LEAN CLAY.						
- 40-	428.1				WOH/18"	'SS12			
		-		¥////		0012		REC=100%	
		Rough drilli	ng at 42.5.						
		-		4					
- 45-	423.1 -	Interbedded	d gray moist extremely weak weathered draw medium strong to very strong		50/3"	SS13		*** REC=100%	
		LIMESTON	E (Bedrock).	_/					
		-							
	GROU	NDWATER DA	ATA DRILL	ING DATA		1	Drawn by: RLB Date: 7/5/20	Checked by: WJL Date: 8/7/20	App'vd. by: LJC Date: 10/8/20
			AUGER <u>3</u>	<u>1/4"</u> HOLLO	W STEM			CEUTECHN	OI OCV=
		ERED AT <u>41</u> F						GEOTECHN	ULULY &
AT _	43.8 FE	ET AFTER <u>0</u> H		R <u>WJL</u> LO DRILL RIG	OGGER				
				R TYPE <u>Aut</u>	<u>o</u>		IKEC Clift	y Creek Boiler S	lag Project
PE	MARKS	Refer to Re	HAMMER EF pring B-5A for top of profile .	FICIENCY _	<u>95</u> %				
Boi	ring ba	ckfilled with c	ement-bentonite grout.				LOG	OF BORING	
								Page 2 of 2	
							Pro	ject No. J0369	9/6.01

Su	Datum	vation: <u>448.8</u> Completion Date: <u>6/30/20</u>	GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	Δ - UU/2 0 _, 5 1 STANDARD I	PENETRATION	☐ - SV 2,0 2,5 RESISTANCE		
DEPTH	ELEVATION	DESCRIPTION OF MATERIAL	GRAPI	DRY UNIT V SPT BLOW C CORE REC	SAM	PL I	WATER CONTENT, % 10 20 30 40 50			
		Black moist very loose SAND (Slag).		1-1-1	SS1	A	REC=50%			
				1-1-1 (3)	SS2		REC=22%			
	5-443.8	Drilling mud added to auger stem at 5.0'.	$\overline{\nabla}$	1-1-1						
SES ONLY.				(3)	SS3		REC=17%			
ION PURPOS		Interbedded gray moist extremely weak weathered SHALE and gray medium strong to very strong LIMESTONE (bedrock).	ı k	WOH-1 -50/3" ()	SS4		REC=80%			
ILLUSTRAT	438.8			50/2"	(SS5)		REC=0%			
TION MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.										
ADUAL. GRA	5-433.8									
N MAY BE GR										
AND THE TRANSITIO										
H — 20	428.8	_								
10/8/20										
CLONE ME.GPJ										
GPJ 00	<u>GRO</u>	AUGER _3	LING DATA 3 1/4" HOLLO	W STEM		Drawn by: RLB Date: 7/5/20	Checked by: WJL Date: 8/7/20	Date: 10/8/20		
PAGE#) J036976.01	ENCOUN	<u>LDB</u> DRILLE <u>TD-</u> 5 HAMME	NG FROM ER <u>WJL</u> LO 5_ DRILL RIG ER TYPE <u>Aut</u> EFFICIENCY	OGGER			GEOTECHN F Creek Boiler S	ROM THE GROUND UP		
BORING LOG (WITH	REMARK	S: Boring backfilled with cement-bentonite g				LOG	OF BORIN Page 1 of 1			
N60 BORII						Proj	ject No. J036			

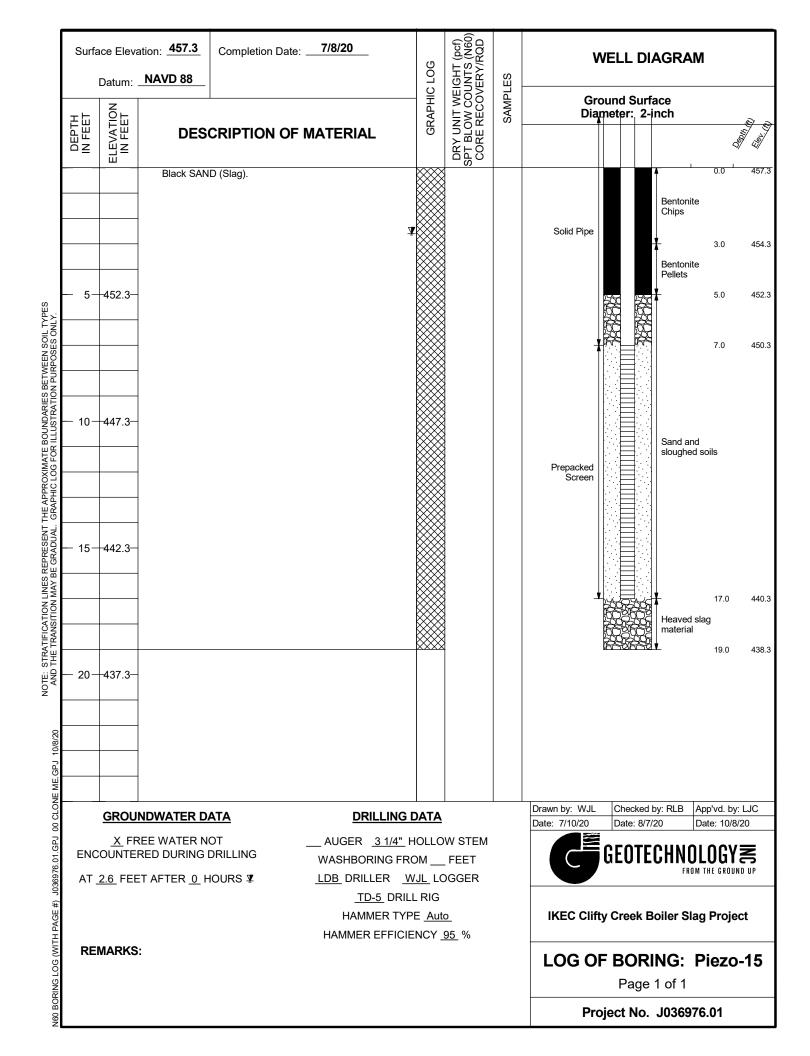
	Surfa		NAVD 88	Completion Date: _	7/1/20	.0G	tHT (pcf) TTS (N60) RY/RQD	S	∆ - UU/2	EAR STRENGTH	, tsf □ - SV ₋ 0 2,5
	ᆵ	Datum:				GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	STANDARD	PENETRATION I LUE (BLOWS PEI (ASTM D 1586)	RESISTANCE
	DEPTH IN FEET	EVA.	DESC	CRIPTION OF M	IATERIAL	Ö	RY U T BL(ORE		PL I	ATER CONTENT	
		 	Black mois	t very loose coarse SAN	ND trace gravel		<u>а</u> %о		10 2	20 30 4	0 50
			(Slag).	. , , , , , , , , , , , , , , , , , , ,	, a g. a		1-1-2 (5)	SS1	A		
			Black wet v (Slag).	ery loose coarse SAND), trace gravel					REC=61%	
					∇		1-1-1 (3)	SS2	.	REC=33%	
rPES .Y.					-						
CATION LINES REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN SOIL TYPES INSTITION MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.	— 5- ——	443.4	Drilling mud	d added to augers at 5.0)'.		WOH-1-1 (3)	SS3	Á	REC=0%	
S BETV ON PUI											
NDARIE STRATI							VOH-WOI				
TE BOUI							-1 ()	SS4		REC=0%	
COXIMA:	10_	438.4									
IT THE APPRIL. GRAPHIC		430.4					WOH-1-1 (3)	SS5	Å	REC=6%	
PRESEN SRADUA											
NES RE IAY BE (1-1-1	SS6	A		
TION LI							(3)			REC=6%	
	- 15-	433.4	Switched to	o mud rotary at 15.0'.							
NOTE: STRATIF AND THE TRA			- Switched to	Thiud Total y at 15.0.			2-2-1 (5)	SS7	A		
NO A A							. ,			REC=6%	
10/8/20			Gray very n	noist soft LEAN CLAY.							
00 CLONE ME.GPJ											
NE M											1
00 CLC		<u>GROU</u>	NDWATER DA	ATA	DRILLING D	<u>ATA</u>			Drawn by: RLB Date: 7/5/20	Checked by: WJL Date: 8/7/20	App'vd. by: LJC Date: 10/8/20
.GPJ (_	AUGER <u>3 1/4"</u> H	OLLO	W STEM			PENTEPUNI	שו טרע ב
J036976.01.GPJ	El	NCOUNT	ERED AT <u>4</u> F	EET ♀	WASHBORING FRO					GEOTECHNI	JLUUT (5) Om the ground up
39E0C					LDB DRILLER W		GGER				
\GE #)					HAMMER TYPI		<u>)</u>		IKEC Clifty	/ Creek Boiler S	lag Project
ТН РА	_				HAMMER EFFICIE	NCY _	<u>95</u> %				-
0G (W	RE Bo	MARKS	: Drilling mu ckfilled with c	id at ground surfac ement-bentonite gr	e at completion. rout.				LOG	OF BORING	G: B-9
RINGL										Page 1 of 2	
N60 BORING LOG (WITH PAGE#)									Pro	ject No. J0369	76.01

Surf		ation: 448.4	Completion Date:	7/1/20	90	HT (pcf) ITS (N60) RY/RQD	6	∆ - UU/2 0.5	3HEA 1.0	AR STRENGTH ○ - QU/2 1,5 2	□ - SV	
王山	Datum:				GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	STANDAR	D PF	ENETRATION I JE (BLOWS PEI (ASTM D 1586)	RESISTANC	E
DEPTH IN FEET	ELEVATION IN FEET	DESC	CRIPTION OF	MATERIAL	5	DRY UI PT BLC CORE I		PL I 10	WAT 20	ER CONTENT	, %	LL
			noist soft LEAN CLAY ack to hollow stem au			VOH-WO -2 ()	H SS8[F	REC=100%		
										KLC-100 //		
30-	423.4						ST9			REC=0%		
		Gray and b (Possible g	rown sandstone and I ravel bed).	imestone fragments	500	32-50/2"	SS10.			REG=100%		
— 30-	418.4	Brown med	lium dense angular G	RAVEL, some clay.		8-11-12						
		Interhedde	d gray moist extremel	v weak to very weak	_	(36)	SS11			REC=78% REC=100%		
		│ \ SHALE and	d gray moist extreme d gray medium strong IE (Bedrock).	to very strong		50/2	<u>,3312</u> j					
	413.4											
								Drawn by: RL		Checked by: WJL	App'vd. by: LJC	
		NDWATER DA		AUGER 3 1/4" WASHBORING FILDB DRILLER	_HOLLO	FEET		Date: 7/5/20		Date: 8/7/20	Date: 10/8/20	
				<u>TD-5</u> DR HAMMER TY HAMMER EFFIC	PE Aut			IKEC CI	ifty C	Creek Boiler S	lag Project	
RE BO	EMARKS oring bac	: Drilling mu ckfilled with c	id at ground surfa ement-bentonite	ace at completion. grout.				LO	G O	F BORING Page 2 of 2	G: B-9	
3								Р	roje	ct No. J0369	76.01	



			464.3		7/1/20		£000		SHI	EAR STRENGTH	H, tsf
	Surfa	ace Eleva	ation: <u>464.3</u>	Completion Date:	771720	(2)	9 S S		∆ - UU/2	○ - QU/2	□ - SV
		Datum:	NAVD 88			0	문문	ပ္သ	0,5 1	.0 1.5 2	2,0 2,5
						皇		PLE	STANDARD	PENETRATION	RESISTANCE
	- -	ELEVATION IN FEET				GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	N-VA	LUE (BLOWS PE (ASTM D 1586)	ER FOOT)
	DEPTH IN FEET	¥ H H H	DESC	CRIPTION OF I	MATERIAI	GR/		S			
		N N N	DES		VIATERIAL		Z IB OR€		PLI	ATER CONTENT	Г, % ————— LL
		<u> </u>							10 2	20 30 4	40 50
			Brown and (Fill/Slag).	black moist medium d	lense SAND		4-5-6	SS1			
			(*,				(17)			*** REC=72%	
ŀ			Transitions	to very loose.							
ŀ							2-2-2	SS2			
ŀ							(6)	ļ		REC=50%	
L	- 5-	459.3									
							1-1-2	SS3	A		
ES							(5)			* * REC=50%*	
₽Ž			Brown mois	st very loose silty SAN	D (Fill).	- ₩					
SOIL TYPES SES ONLY.							WOH-1-1 (3)	SS4	A :::::::		
POS			-				(3)			REC=39%	
ETWEEN	 10-	454.3		own and black moist n GRAVEL (Fill/Slag).	nedium dense	- ₩					
ES BI			SAND and	GIVAVEE (I III/Slag).			2-10-15 (40)	SS5		REC=78%	
DAR							(13)	-			
SOUNDARII LLUSTRAT							0.45.44				
IMATE B							9-15-14 (46)	SS6		REC=78%	
OXIMA LOG F			, =:			_ 💥					
œυ.	— 15 <i>-</i>	449.3	Black very SAND (Fill/	moist medium dense s ′Slag).	silty fine to coarse		9-13-14				
THE APP GRAPHI							(43)	SS7		REC=83%	
늘											
LINES REPRESENT MAY BE GRADUAL.			Olive brown	n and brown moist LEA		- 💹					
EPR GR			limestone f		AN CLAT WILL						
VES F	20	444.0				∇					
NON W	— 20 <i>-</i>	444.3		ing from 20' to 25'.			13-30 -50/4"	SS8			
CATIO			Interbedded weak weath	d to irregularly bedded nered SHALE and gray	gray extremely medium strong to		()	<u> </u>		REC=100%	
PAN F			very strong	LIMESTONE (Bedroo	k).						
FH											
NOTE: STRATIFIC AND THE TRAN											
No No No	- 25-	439.3								RFC=100%	
							50/3"	SS9			
٥											
10/8/20											
GPJ 1											
CLONE ME										To:	
OLC.		<u>GROU</u>	NDWATER DA	<u>ATA</u>	DRILLING	G DATA			Drawn by: RLB Date: 7/5/20	Checked by: WJL Date: 8/7/20	App'vd. by: LJC Date: 10/8/20
00 ک					AUGER <u>3 1/4"</u>	HOLLO	WSTEM				
31.GF	EN		ERED AT <u>20</u> F	FFFT ▽	WASHBORING F				کے ا	GEOTECHN	OLOGY系
J036976.01.GPJ	LIV	, JOUINT	בייבט עו <u>גט</u> נ	-	LDB DRILLER						ROM THE GROUND UP
J036					TD-5 DR		JOLIN				
й #					HAMMER T		0		IKEC CII	/ Creek Boiler S	Slag Project
RING LOG (WITH PAGE #)					HAMMER EFFIC				INLO OIIII	Y OLGER DOUBLE	nag i roject
WIT	RF	MARKS	: Auger refu	sal at 26.3 feet	I IZIVIIVILIX LITTIC	JILINUI _	<u>JJ</u> /0		_		
00	REMARKS: Auger refusal at 26.3 feet. Boring backfilled with cement-bentonite grout.				LOG OF BORING: B-				G: B-11		
NG L	Zornig Buokimou irini oomoni zornomo groun							Page 1 of 1			
≂										•	

Project No. J036976.01


			449.3		7/6/20		£802		SHE	EAR STRENGTH	l, tsf		
	Surfa	ace Eleva	ation: 449.3	Completion Date: _	110/20	ى ق	8 (N		∆ - UU/2	○ - QU/2	□ - SV		
		Datum:	NAVD 88			P	PAR.	ES			0 2 _i 5		
ŀ		ELEVATION IN FEET				SRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	STANDARD PENETRATION RESISTANCE A N-VALUE (BLOWS PER FOOT) (ASTM D 1586)				
	DEPTH IN FEET	I FEI	DES	CRIPTION OF N	MATERIAL	9	PEG F		WA	ATER CONTENT	, %		
							SPTS		PI	••••••••••••••••••••••••••••••••••••••	0 50 LL		
			Black mois	t very loose SAND, trad	ce gravel (Slag).		1-2-3 (8)	SS1					
-			Transitions	to very loose.						REC=78%			
							111						
							1-1-1 (3)	SS2	A	REC=67%			
Π Σ													
SES ONLY.	- 5-	 4 444.3 	Switched to	o mud rotary at 5'.		*	WOH-1-1 (3)	SS3	A				
URPC							(0)			REC=33%			
BOUNDARIES BEIWEEN			Black, trace	e brown, very moist ver	ry loose fine SAND,	- 💥							
TRAT			trace grave	el (Slag).			VOH-WO	Н					
ILLUS ILLUS							-1 ()	SS4			>>(
FOR -							(/			REC=33%			
LOG	_ 10_	439.3											
GRAPHIC LOG FOR	10	400.0					WOH-1-1	SS5					
 							(3)	333	.	REC=33%			
ADUA					<u></u>	- 💥							
E GR			(Slag).	moist very loose GRA\	VEL, trace sand								
MAY B							1-2-1 (5)	SS6		•			
NSITION LINES REPRESENT NSITION MAY BE GRADUAL.							(0)	ļ		REC=17%			
	- 15-	434.3											
AND THE TRA							1-1-2 (5)	SS7					
AN							(3)			REC=39%			
ŀ													
10/8/20			Provent no se	st dense SAND and GF	DAVEL trace silts	_ 💢							
			clay seams	อเ นอกจอ จักเทบ สกัน GF 6.	NOVEL, ITACE SITTY	• O							
00 CLONE ME.GPJ			Rouah drilli	ing from 19.5' to 23.5'.)							
CLONE		GRUII	NDWATER DA		DRILLING	ΠΔΤΛ	I		Drawn by: WJL	Checked by: RLB	App'vd. by: LJC		
		<u> UNOU</u>	HUTTAIEN U	<u> </u>			M 077		Date: 7/10/20	Date: 8/7/20	Date: 10/8/20		
J036976.01.GPJ	E	אכטו ואיז	ERED AT <u>5</u> F	- FFT ∇	AUGER <u>3 1/4"</u> WASHBORING FF					GEOTECHNI	OLOGY≅		
6976.(LI	TOOUNI	LIVED VI O L	<u></u>	LDB DRILLER						OM THE GROUND UP		
					<u>TD-5</u> DRI								
50 BORING LOG (WITH PAGE #)					HAMMER TY HAMMER EFFICI				IKEC Clifty	Creek Boiler S	lag Project		
3 (WIT	RE	MARKS	: Core water	r at 22.3' at comple	etion.	_			I OG (OF BORING			
IG LOC	B0	inig bac	killiea With C	ement-bentonite g	jrout.					Page 1 of 2	, D-10		
30RIN													
90 B									Pro	ject No. J0369	76.01		

	Surfa	ace Elev	ation: 449.3	Completion Date:7/6/20	90	HT (pcf) TS (N60) Y/RQD		∆ - UU/2	O - QU/2	□ - SV
-		Datum:	NAVD 88		GRAPHIC LOG	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	SAMPLES	STANDARD F	O 1,5 2 PENETRATION I LUE (BLOWS PE (ASTM D 1586)	
	DEPTH IN FEET	ELEVATION IN FEET	DES	CRIPTION OF MATERIAL	9	RY UI T BLC		PLI WA	ATER CONTENT	·, %
		<u> </u>						10 2	0 30 4	0 50
-				st dense SAND and GRAVEL, trace silty s. (continued)		13-19-23 (67)	SS8		REC=83%	.
ES			Very easy	drilling from 23.5' to 25'.						
EN SOIL TYFOSES ONLY	25_	424.3	Switched b	pack to augers at 25'.	000	8-9-50/0"	SS9		REC=25%	
ETWE				d to irregularly bedded light gray medium	· ()	5			DEC=100%	
ES B				ery strong LIMESTONE and gray weak to very weak SHALE (Bedrock).	1)X()	50/1"	SS10		REC=100%	
MATE BOUNDARI 3 FOR ILLUSTRA			Interbedde strong to v extremely comprised thick beds	d to irregularly bedded light gray medium ery strong LIMESTONE and gray weak to very weak SHALE. This interval is of approx. 82 % limestone in up to 1-1/4" and approx. 18% shale in up to 1" thick boro Formation).		97% 52%	NQ11			
CATION LINES REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN SOIL TYPES INSTITON MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.	- 30-	419.3	to coarse-o occasional Water stair	to gray medium strong to very strong fine- grained crystalline LIMESTONE, shale partings (Dillsboro Formation). ned joints at 28.1', 28.2' and 29.1'. ning from 28.2' to 29.3'.						
NOTE: STRATIFICATION L AND THE TRANSITION I	35-	414.3	strong to v LIMESTON SHALE. Th limestone i shale in up	d to irregularly bedded light gray medium ery strong fossiliferous fine-grained NE and gray extremely weak to very weak his interval is comprised of approx. 70% in up to 2.5" thick beds and approx. 30% to 3.5" thick beds (Dillsboro Formation).		94% 74%	NQ12			
CLONE ME.GPJ 10/8/20			vvalet stall	ned joints at 34.8' and 35.8'						
CLC		GROU	NDWATER D	ATA DRILLING	DATA			Drawn by: WJL	Checked by: RLB Date: 8/7/20	App'vd. by: LJC Date: 10/8/20
GE#) J036976.01.GPJ 00	EN		FERED AT <u>5</u> F	AUGER <u>3 1/4"</u>	HOLLC OM <u>VJL</u> LC LL RIG	OW STEM _ FEET DGGER			GEOTECHN	OLOGY S
N60 BORING LOG (WITH PAGE #)				HAMMER EFFICII r at 22.3' at completion. cement-bentonite grout.				LOG	OF BORING Page 2 of 2	6: B-13
N60 E								Proj	ect No. J0369	76.01

			nation: <u>449.0</u>	Completion Date: 7/7/20	507.0	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	LES	Δ - UU/2 0 _i 5 1	O - QU/2 O 1,5 2 PENETRATION I	□ - SV _i 0 2 _i 5
	DEPTH IN FEET	ELEVATION IN FEET	DESC	CRIPTION OF MATERIAL	GRAPHIC LOG	UNIT WE LOW CO E RECO	SAMPLES	▲ N-VA	LUE (BLOWS PE (ASTM D 1586)	R FOOT)
		ELEV IN F				DRY SPT B		PL	ATER CONTENT	0 50 LL
			Black mois	t very loose SAND and Gravel (Slag).		1-1-2 (5)	SS1	X	REC=67%	
						1-1-1 (3)	SS2	A	REC=44%	
ŀ					_	(0)				
vo.	— 5- ——	444.0	> Drilling mud	d added to augers at 5.0'.	******	1-1-1 (3)	SS3	4 :::::::		
ICATION LINES REPRESENT THE APPROXIMATE BOUNDARIES BETWEEN SOIL TYPES INSTITION MAY BE GRADUAL. GRAPHIC LOG FOR ILLUSTRATION PURPOSES ONLY.			Black very (Slag).	moist very loose fine SAND, trace gravel	-	1-1-1	SS4			
EEN S POSE						(3)	004	•	*** REC=33%**	
ES BETW TION PUR	 10-	439.0				WOH-1-1 (3)	SS5	A		
NDARI ISTRA			Black very	moist very loose SAND and GRAVEL	- 💥	(0)			REC=67%	
ATE BOU FOR ILLL			(Slag).	moist very 100se SAND and GNAVEL		1-1-1 (3)	SS6	A	REC=50%	
SOXIM	15_	434.0	_							
THE APPR GRAPHIC		454.0	─ Piston sam	pler used from 15' to 17'.			SST7		REC=63%	
SENT DUAL.										
SEPRE E GRA			Reddish bro	own moist stiff LEAN CLAY.	- 💥					
INES F	— 20-	429.0								
TION			Brown mois	st soft to medium stiff sandy LEAN CLAY.		3-2-2 (6)	SS8		REC=100%	
TFICA- RANSI			Brown mois	st medium stiff LEAN CLAY, some gravel.			ST9			
NOTE: STRATIF AND THE TRA							319		REC=42%	
OTE:										
Ž	— 25 –	424.0	Brown mois trace lean o	st medium dense GRAVEL with sand, clay.		7-6-3 (14)	SS10	::: X :::::		
10/8/20										
GPJ 1		-		ling from 27.5' to 48'. st medium dense SAND and GRAVEL.						
			Drown more	or model and or week.	. 0					
CLONE ME		GROUI	NDWATER DA	ATA DRILLING	DATA			Drawn by: WJL	Checked by: RLB	App'vd. by: LJC
00				AUGER <u>3 1/4"</u>		W STEM		Date: 7/10/20	Date: 8/7/20	Date: 10/8/20
.01.GPJ	ΕN	NCOUNT	ERED AT <u>5</u> F						GEOTECHNI	OLOGY롱
J036976.01.				LDB DRILLER 1	NJL_LC	GGER			FR	OM THE GROUND UP
				<u>TD-5</u> DRII						
1 PAGE				HAMMER TYI HAMMER EFFICI				IKEC Clifty	Creek Boiler S	iag Project
(WITF	RE	MARKS	: Drilling mu	ıd at 17.4' at completion.	,401 _	<u></u> /0		1.00.4	TE DODING). D 4E
N60 BORING LOG (WITH PAGE #)	Boi	ring bac	kfilled with c	ement-bentonite grout.				LUG	OF BORING Page 1 of 2	J. D-13
N60 BOF								Proj	ject No. J0369	76.01

Surfa	ce Flev	ation: 449.0	Completion Date:	7/7/20		ocf) 20 20			AR STRENGTH	•			
			Completion Bate.		98	DRY UNIT WEIGHT (pcf) SPT BLOW COUNTS (N60) CORE RECOVERY/RQD	(0	∆ - UU/2 0.5 1	○ - QU/2 ,0 1,5 2	□ - SV .0 2.5			
[NAVD 88			GRAPHIC LOG	A PER OUN	SAMPLES	STANDARD I	PENETRATION I	RESISTANCE			
ェ뉴	N N N				\APH	MT N	SAM	▲ N-VALUE (BLOWS PER FOOT) (ASTM D 1586)					
DEPTH IN FEET	VAT	DES	CRIPTION OF I	MATERIAL	P. P.	Y UN BLO RE F		WA	ATER CONTENT	. %			
	ELEVATION IN FEET					SPT		PL	20 30 4				
		Brown mois (continued	st medium dense SANI)	D and GRAVEL.	。 。 ()	8-10-11 (33)	SS11		A				
) Ø								
		Transitions	to dense		。 O								
		Transitions	to defise.		0 (
- 35	- 414.0				, O	20-20-25	SS12						
					0 0	(71)	3312		* * REC=83% *				
) Ø								
		Transitions	to medium dense.		° 0								
- 40-	- 409.0				0 0								
70	400.0				Ø	12-9	SS13		REC=61%				
					0 0		,						
) - 								
		Brown mois cobbles.	st very dense SAND ar	nd GRAVEL, trace	。 。								
- 45 -	404.0-) 0	30-47-50				97			
					0	(154)	SS14	•	REC=89%				
					· ()								
		Very rough	drilling at 48.3'.	1	7	50/1"	NSS15		* REC=100%				
	200.0	\ weak weatl	d to irregularly bedded hered SHALE and gray	medium strong to									
50-	-399.0-	very strong	LIMESTONE (Bedroc	k).									
- 55	394.0												
	GROU	NDWATER DA	 ATA	DRILLING	DATA	I	<u> </u>	Drawn by: WJL	Checked by: RLB	App'vd. by: LJC			
				AUGER <u>3 1/4"</u>		W STEM		Date: 7/10/20	Date: 8/7/20	Date: 10/8/20			
EN	ICOUNT	ERED AT <u>5</u> F	EET ∑	WASHBORING FR					GEOTECHNI	DLOGY롱			
		_		LDB DRILLER V						OM THE GROUND UP			
				TD-5 DRIL									
				HAMMER TYF				IKEC Clifty	Creek Boiler S	ag Project			
REM	MARKS	: Drilling mu	ıd at 17.4' at comp	letion.	LINUT _	3J 70		100). D 45			
Bor	ing bad	ckfilled with c	ement-bentonite g	grout.				LOG (OF BORING	э: Б- 15			
									Page 2 of 2				
								Proj	ject No. J0369	76.01			

SOIL CLASSIFICATION SHEET

NON COHESIVE SOILS

(Silt, Sand, Gravel and Combinations)

<u>Density</u>	Particle S	ize Identification
Very Loose - 4 blows/ft. or	ess Boulders	- 8 inch diameter or more
Loose - 5 to 10 blows	t. Cobbles	- 3 to 8 inch diameter
Medium Dense - 11 to 30 blows	t. Gravel	- Coarse - 3/4 to 3 inches
Dense - 31 to 50 blows	t.	- Fine - 3/16 to 3/4 inches
Very Dense - 51 blows/ft. or	nore	
•	Sand	- Coarse - 2mm to 5mm (dia. of pencil lead)
Relative Properties		- Medium - 0.45mm to 2mm
Descriptive Term Percent		(dia. of broom straw)
Trace 1 – 10		- Fine - 0.075mm to 0.45mm
Little 11 – 20		(dia. of human hair)
Some 21 – 35	Silt	- 0.005mm to 0.075mm
And 36 – 50		(Cannot see particles)

COHESIVE SOILS (Clay, Silt and Combinations)

		Unconfined Compressive
Consistency	Field Identification	Strength (tons/sq. ft.)
Very Soft	Easily penetrated several inches by fist	Less than 0.25
Soft	Easily penetrated several inches by thumb	0.25 - 0.5
Medium Stiff	Can be penetrated several inches by thumb with moderate effort	0.5 – 1.0
Stiff	Readily indented by thumb but penetrated only with great effort	1.0 – 2.0
Very Stiff	Readily indented by thumbnail	2.0 - 4.0
Hard	Indented with difficulty by thumbnail	Over 4.0

<u>Classification</u> on logs are made by visual inspection.

Standard Penetration Test – Driving a 2.0" O.D., 1 3/8" I.D., sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30 inches. It is customary to drive the spoon 6 inches to seat into undisturbed soil, then perform the test. The number of hammer blows for seating the spoon and making the tests are recorded for each 6 inches of penetration on the drill log (Example – 6/8/9). The standard penetration test results can be obtained by adding the last two figures (i.e. 8+9=17 blows/ft.). Refusal is defined as greater than 50 blows for 6 inches or less penetration.

<u>Strata Changes</u> – In the column "Soil Descriptions" on the drill log, the horizontal lines represent strata changes. A solid line (————) represents an actually observed change; a dashed line (————) represents an estimated change.

<u>Groundwater</u> observations were made at the times indicated. Porosity of soil strata, weather conditions, site topography, etc., may cause changes in the water levels indicated on the logs.

ROCK CLASSIFICATION SHEET

ROCK WEATHERING

<u>Descriptions</u> <u>Field Identification</u>

Unweathered No visible sign of rock material weathering, perhaps slight discoloration on major

discontinuity surfaces.

Weathered Discoloration indicates weathering of rock material and discontinuity surfaces. All the

rock material may be discolored by weathering and may be somewhat weaker

externally than it its fresh condition.

Highly Weathered Less than half of the rock material is decomposed and/or disintegrated to a soil.

Fresh or discolored rock is present either as a discontinuous framework or as

corestones.

Residual Soil All rock material is decomposed and/or disintegrated to soil. The original mass

structure is still largely intact with bedding planes visible, and the soil has not been

Uniaxial

significantly transported.

ROCK STRENGTH

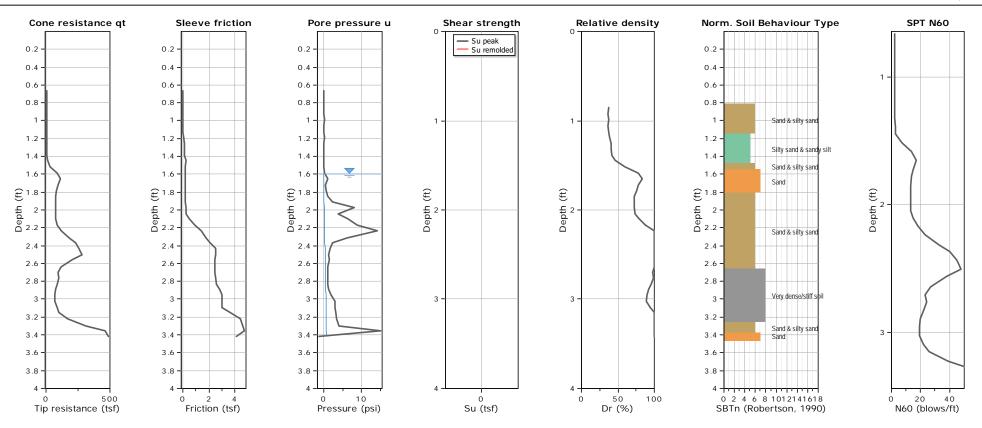
<u>Descriptions</u> Extremely Weak	Field Identification Indented by thumbnail	Compressive Strength (psi) 40-150
Very Weak	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife.	150-700
Weak	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer.	700-4,000
Medium Strong	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with a single blow of a geological hammer.	4,000-7,000
Strong	Specimen requires more than one blow of a geological hammer to fracture.	7,000-15,000
Very Strong	Specimen requires many blows with a geological hammer to fracture.	15,000-36,000
Extremely Strong	Specimen can only be chipped with geological hammer.	>36,000

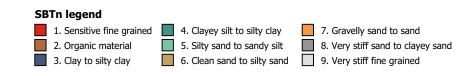
BEDDING

Descriptive Term	Bed Thickness
Massive	> 4 ft.
Thick	2 to 4 ft.
Medium	2 in. to 2 ft.
Thin	< 2 in.

APPENDIX C - ROCK CORE PHOTOGRAPHS

APPENDIX D - CPT SOUNDING INFORMATION

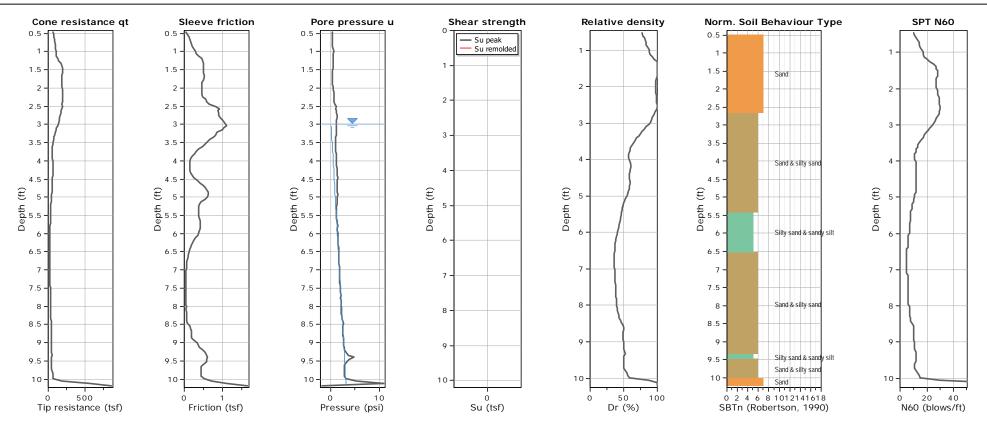

Geotechnical Engineers 11816 Lackland Road St. Louis, Missouri

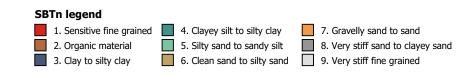

CPT-2A

Total depth: 3.42 ft, Date: 7/22/2020

Cone Type: 15cm2 Cone Operator: DWJ

Project: IKEC Clifty Creek Boiler Slag Project

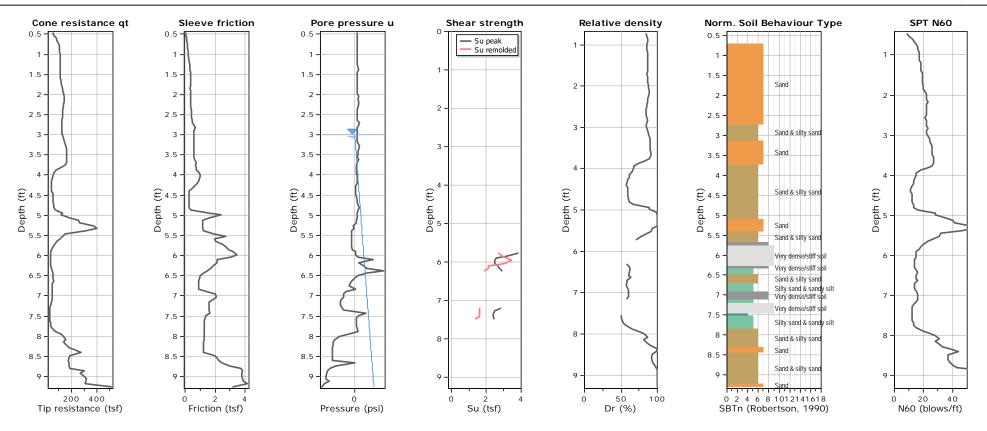

Geotechnical Engineers 11816 Lackland Road St. Louis, Missouri

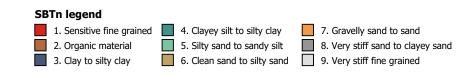

CPT-4

Total depth: 10.18 ft, Date: 7/22/2020

Cone Type: 15cm2 Cone Operator: DWJ

Project: IKEC Clifty Creek Boiler Slag Project

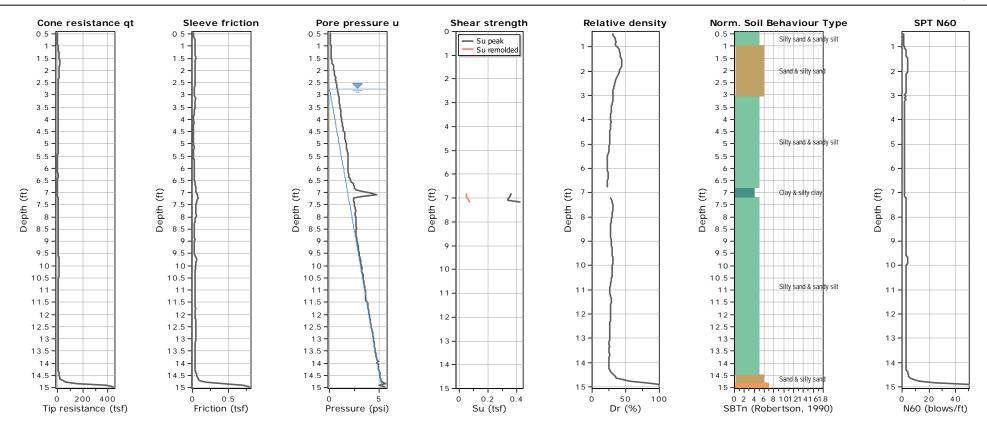

Geotechnical Engineers 11816 Lackland Road St. Louis, Missouri

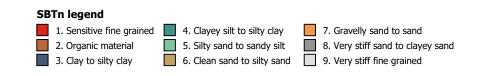

CPT-6

Total depth: 9.26 ft, Date: 7/22/2020

Cone Type: 15cm2 Cone Operator: DWJ

Project: IKEC Clifty Creek Boiler Slag Project

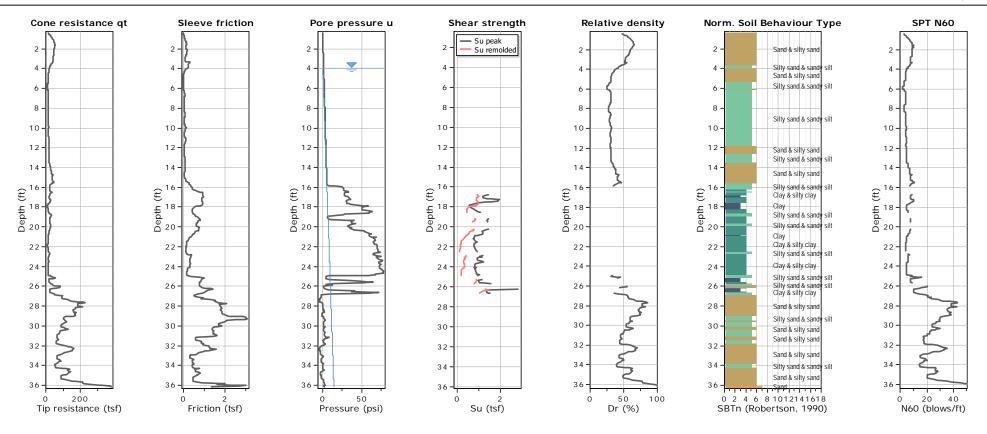

Geotechnical Engineers 11816 Lackland Road St. Louis, Missouri

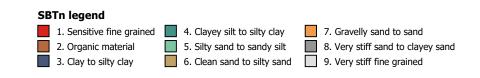

CPT-8

Total depth: 14.97 ft, Date: 7/22/2020

Cone Type: 15cm2 Cone Operator: DWJ

Project: IKEC Clifty Creek Boiler Slag Project

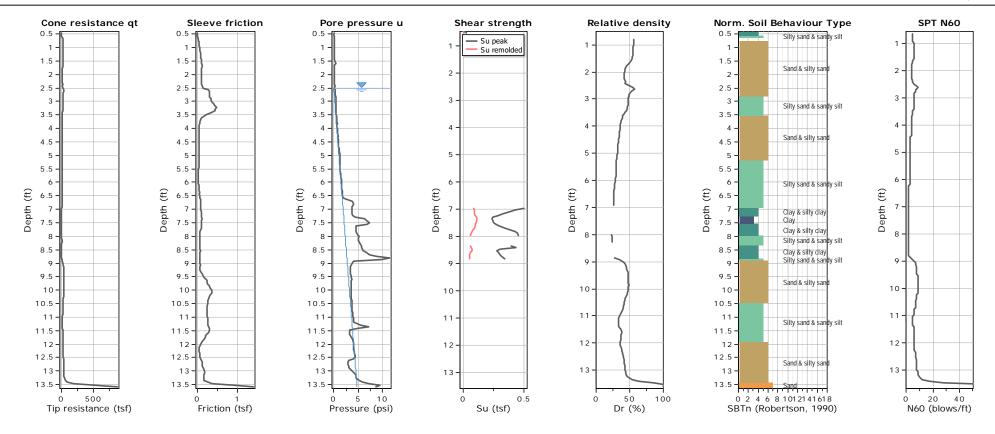

Geotechnical Engineers 11816 Lackland Road St. Louis, Missouri

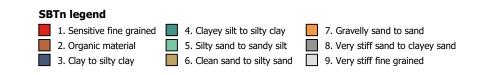

CPT-10

Total depth: 36.16 ft, Date: 7/22/2020

Cone Type: 15cm2 Cone Operator: DWJ

Project: IKEC Clifty Creek Boiler Slag Project

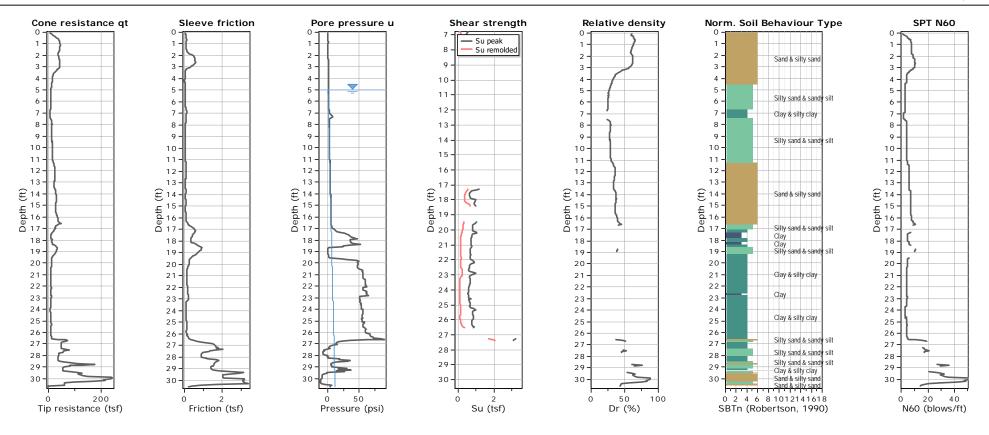

Geotechnical Engineers 11816 Lackland Road St. Louis, Missouri

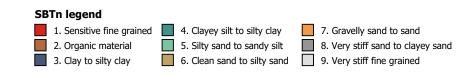

CPT-12

Total depth: 13.59 ft, Date: 7/22/2020

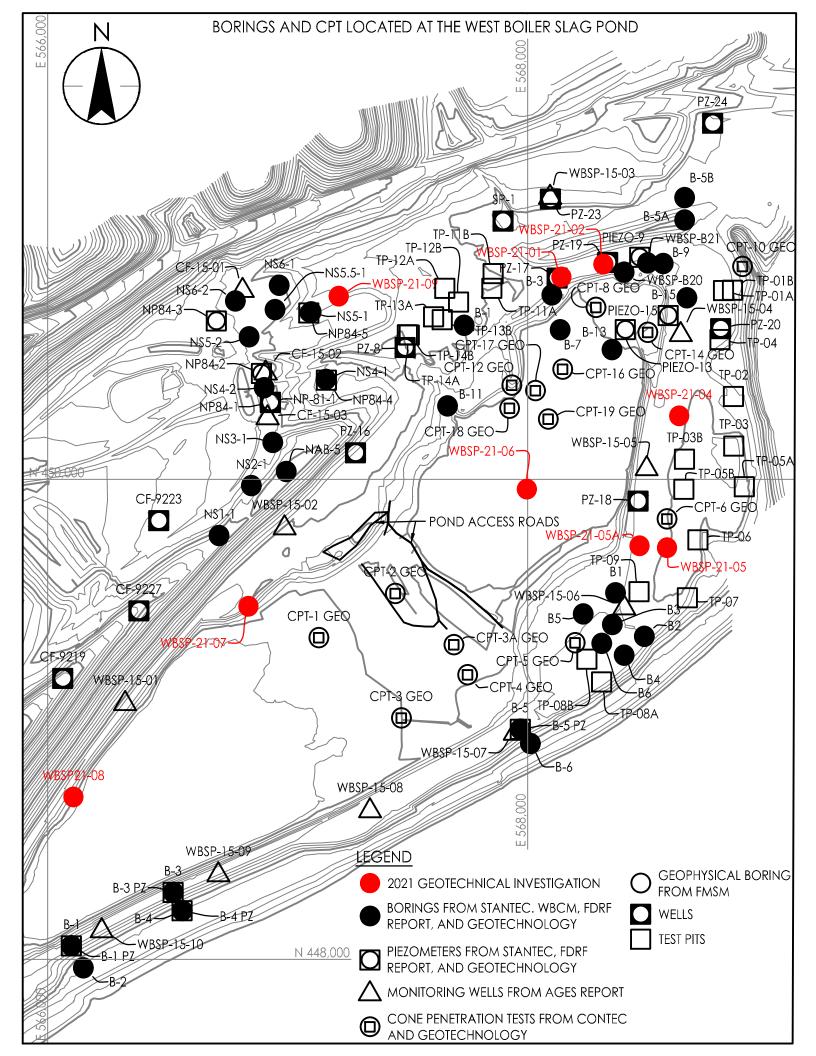
Cone Type: 15cm2 Cone Operator: DWJ

Project: IKEC Clifty Creek Boiler Slag Project


Geotechnical Engineers 11816 Lackland Road St. Louis, Missouri


CPT-14

Total depth: 30.72 ft, Date: 7/22/2020


Cone Type: 15cm2 Cone Operator: DWJ

Project: IKEC Clifty Creek Boiler Slag Project

Stantec (2021)

SUBSURFACE LOG (DRAFT) Page: 1 of 2

Client Bo	orehole I	dentification WBSP-21-0	01				Stantec Bo	ring No. \	WBSP-21-01
Client		IKEC			Boring Locat	tion 4	50842.148	_	
Project N	 Number	175539026			Surface Elev	ation 4	76.7 ft	Elevation [Datum NAVD88
Project N	Name	Clifty Creek WBSP and	d LRCP	Closure	Date Started	- I 2	/23/21	Completed	d 2/23/21
Project	Location	Clifty Creek Power Plan	t, Madis	on, IN	Depth to Wa	iter N	/A	Date/Time	N/A
Logged I	•	<u> </u>	,		Depth to Wa	iter N	/A	Date/Time	N/A
Drilling C	Contracto	or Stantec Consulting	Service	s Inc.	Drill Rig Typ	e and ID	CME 55	Гrack Rig я	#711
		ing and Sampling Tools			0 7.				
		d Sampling Tools (Type a		,			·	· · · · · · · · · · · · · · · · · · ·	
Sampler	· Hamme	er Type Automatic	Weigh	t 140	lb Drop	30 in	Effi	ciency	88 % (Avg.)
Borehole					Borehole In	clination	 ı (from Vert	ical)	Vertical
Litholo	gy	Ove	erburden	Sample #	Depth	Rec. Ft.	Blows/	NMC %	
Elevation	Depth	Description Ro	ock Core	RQD	Run	Rec. Ft.	Press.(psi) Rec. %	Depth	Remarks
476.7	0.0	Top of Hole							
		SAND (SW), CCR, da brown and black, mois		SPT-1	0.0 - 1.5	1.4	3-11-19		
-		medium dense to dense with fine grained grave	se,	J. 1 1	0.0 1.0				-
_		with line grained grave	 						Gravel=10 %,
				SPT-2	1.5 - 3.0	1.2	17-21-21		Sand=78%, Fines=12%,
_									Gs=2.86
				SPT-3	3.0 - 4.5	1.3	4-14-17		_
				SPT-4	4.5 - 6.0	1.3	4-4-3		_
471.1	5.6	FAT CLAY (CH), light		01 1-4	4.0 - 0.0	1.0	4-4-0		
_		brown, moist, medium	stiff						-
-		to very stiff, trace sand and gravel	d	SPT-5	6.0 - 7.5	1.3	3-23-35		-
469.2	7.5	− -at 6.0', stiff/hard -at 6.5', gray to light gr	rav						Gravel=1%,
-		gravel and cobbles un		SPT-6	7.5 - 9.0	1.2	4-7-8	16	Sand=16%,
_		7.5'							Fines=83%, Gs=2.68, LL=30, -
		LEAN CLAY (CL), ligh brown with orange and		SPT-7	9.0 - 10.5	1.3	5-4-4		PI=14
_		red mottling, moist, medium stiff to stiff		Ji 1-1	J.U - 1U.J	1.5	0-4-4		_
_									_
				SPT-8	10.5 - 12.0	1.3	2-2-4		
-									-
464.0	12.7	CDAVELLY CLAY (CL	$\overline{}$	SPT-9	12.0 - 13.5	1.5	2-9-10		
		GRAVELLY CLAY (CL gray with orange and							_
_		brown, moist, hard, low plasticity, trace sand		SPT-10	13.5 - 15.0	1.5	5-9-8		-
		p.2.2.2.3, 2.300 00110		OF 1-10	13.3 - 13.0	1.5	J-8-0		
			Stante	ec Consu	Iting Services	Inc.			4/14/21

Page: 2 of 2

		IKEC			Paring Lago	tion 1	EU017 110	NI- E60120	505 E
Client					Boring Local	Boring Location 450842.148 N; 568139.505 E Surface Elevation 476.7 ft Elevation Datum			
	Number	175539026	1					Elevation L	Datum NAVD8
Lithol			Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
		GRAVELLY CLAY gray with orange a brown, moist, hard plasticity, trace sa (Continued)	and d, low	SPT-11	15.0 - 16.5	1.5	8-15-11		
458.7	18.0	-at 16.5', gravel at cobbles from 16.5	nd 5' to	SPT-12	16.5 - 18.0	0.8	9-13-11		
		FAT CLAY (CH), yellowish brown w moist, firm, trace		SPT-13	18.0 - 19.5	1.3	3-5-6		
455.7	21.0			SPT-14	19.5 - 21.0	0.9	2-6-8		
		Bottom of Hole							
		Borehole was bac ground surface us	skfilled with sing a tremi	a mixture e pipe.	of cement-be	entonite (grout from t	he bottom	of hole to the

SUBSURFACE LOG (DRAFT) Page: 1 of 2

Client Bo	orehole l	dentification WBSP-2	1-02				Stantec Bo	ring No. \	WBSP-21-02
Client		IKEC			Boring Locat	tion 4	50896.522	– N; 568315	5.112 E
Project N	Number	175539026			Surface Elev	ation 4	75.1 ft E	Elevation	Datum NAVD88
Project N	Name	Clifty Creek WBSP a	ind LRCF	Closure	Date Started	_ I 2	/23/21	Complete	d 2/23/21
Project I	Location	Clifty Creek Power Pla	ant, Madi	son, IN	Depth to Wa	ter N	I/A [Date/Time	e N/A
Logged I	by B.F	lerries			Depth to Wa	ter N	 /A [Date/Time	• N/A
Drilling C	Contract	or Stantec Consultir	ng Service	es Inc.	Drill Rig Typ	e and ID	CME 55 T	rack Rig	#711
Overburd	Overburden Drilling and Sampling Tools (Type and S					2" Split	Spoon w/o	liners, 3"	Shelby Tubes
Rock Drilling and Sampling Tools (Type and Size)									
Sampler Hammer Type Automatic Weight					lb Drop	30 in	Effic	iency _	88 % (Avg.)
Borehole Azimuth N/A (Vertical)					Borehole In	clination	(from Verti	cal)	Vertical
Litholo	ду		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	'	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
475.1	0.0	Top of Hole							
		SAND WITH GRAV (SW), CCR, dark br	own	SPT-1	0.0 - 1.5	1.5	6-13-2		
		and black, moist, m dense	edium						-
- 472.9	2.2	401100		CDT 0	45.00	4.4	400		_
		LEAN CLAY (CL), b		SPT-2	1.5 - 3.0	1.1	1-2-3		
		moist, soft, some gr							Gravel=2%, – Sand=10%,
_		-at 3.2', high plastici	ty	SPT-3	3.0 - 4.5	1.3	WH-WH- WH	22	Fines=88%,
							VVII		Gs=2.66, LL=34, Pl=16
_				SPT-4	4.5 - 6.0	1.4	1-4-4		_
		-at 5.5', cobble and	gravel						
468.6	6.5	until 6.0'		SPT-5	6.0 - 7.5	1.4	5-12-18		
- 467.6	7.5	GRAVELLY CLAY (gray, moist, firm	CL),	381-3	0.0 - 7.5	1.4	0-12-10		_
407.0	7.0	FAT CLAY (CH), oli	ve						
		brown, moist, hard, gravel with blue, col		SPT-6	7.5 - 9.0	1.5	6-13-12		
_		and gravel from 7.5							_
		8.2'		SPT-7	9.0 - 10.5	0.1	8-18-15		
-		-at 10.5', brown and gravel	trace	CDT 0	10 F 40 O	1.4	4-8-10		_
463.1	12.0	graver		SPT-8	10.5 - 12.0	1.4	4-8-10		
100.1	12.0	SILTY CLAY WITH							-
-	(CL-ML), orange brown, moist, firm				12.0 - 13.5	1.5	3-5-4		_
		,							Sand=27%,
-				SPT-10	13.5 - 15.0	1.1	3-5-4	19	Fines=73%, _ Gs=2.72, LL=24,
									PI=7

Page: 2 of 2

Client B	orehole l	dentification WBSF	P-21-02				Stantec B	oring No. V	/BSP-21-02
Client		IKEC			Boring Locat	tion 4	50896.522	 ? N; 568315.	112 E
Project l	Number	175539026			Surface Elevation 475.1 ft		Elevation Datum NAVD88		
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
-		SILTY CLAY WIT (CL-ML), orange moist, firm <i>(Con</i>	brown,	SPT-11	15.0 - 16.5	1.5	2-3-4		
				SPT-12	16.5 - 18.0	1.5	8-5-5		
455.6	19.5			SPT-13	18.0 - 19.5	0.9	4-6-6		
		No Refusal / Bottom of Hole		<u>ı</u>		1	1		
		Borehole was ba ground surface u	sing a tremi	e pipe.	or coment-be	, norme (g, out 11 OIII	and pottorii (

SUBSURFACE LOG (DRAFT) Page: 1 of 3

Client Bo	orehole I	dentification WBSP-	21-04				Stantec Bo	ring No. \	WBSP-21-04
Client		IKEC			Boring Locat	tion 4	50263.32 N	; 568630.9	955 E
Project I	Number	175539026			Surface Elev	ation 4	71.9 ft E	Elevation [Datum NAVD88
Project I	Name	Clifty Creek WBSP	and LRCF	P Closure	Date Started	1 2	/24/21 (Completed	d 2/24/21
Project	Location	Clifty Creek Power F	Plant, Madi	son, IN	Depth to Wa	iter 2	6.0 ft [Date/Time	2/24/21
Logged	by B.F	lerries			Depth to Wa	iter N	/A [Date/Time	N/A
Drilling (Contracto	or Stantec Consult	ing Service	es Inc.	Drill Rig Typ	e and ID	CME 55 T	rack Rig	#711
Overbur	den Drilli	ing and Sampling To	ols (Type a	and Size)	4.25" HSA,	2" Split	Spoon w/o	liners, 3" S	Shelby Tubes
Rock Dr	illing and	l Sampling Tools (Ty	pe and Siz	e) N/A					
Sample	Hamme	er Type Automatic	nt 140	lb Drop	30 in	Effic	iency	88 % (Avg.)	
Borehole	Borehole Azimuth N/A (Vertical)					clination	(from Verti	cal)	Vertical
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
471.9	0.0	Top of Hole	.11 -						
-		SAND (SW), CCR brown, brown and	black,	SPT-1	0.0 - 1.5	1.0	2-4-4		_
		moist, loose to der little to some grave							_
		naio to some grave	,ı	SPT-2	1.5 - 3.0	1.2	10-16-19		0
				SPT-3	3.0 - 4.5	1.5	13-18-14		Gravel=4%, - Sand=90%,
-				31 1-3	3.0 - 4.3	1.5	13-10-14		Fines=6%,
F		-at 4.5', very dense	•	SPT-4	4.5 - 6.0	1.5	14-33-33		-
-									_
-				SPT-5	6.0 - 7.5	1.5	32-33-23		_
		-at 7.5', medium de	ense						_
				SPT-6	7.5 - 9.0	1.5	4-7-7		
		-at 9.0', very dense		SPT-7	9.0 - 10.5	1.1	6-25-27		_
 		some orange until	10.5'	31 1-7	9.0 - 10.3	1.1	0-23-21		_
-				SPT-8	10.5 - 12.0	1.5	10-21-29		-
		-at 11.5', little yello	w from						_
- - - -		11.5' to 11.6'		SPT-9	12.0 - 13.5	1.5	14-20-29		_
									Gravel=6%, Sand=84%,
AND WAS A STATE OF THE STATE OF				SPT-10	13.5 - 15.0	1.4	15-17-16		Fines=10%,
E				SPT-11	15.0 - 16.5	1.5	14-14-19		Gs=2.95 -
					13.0 - 10.3	1.0	14-14-19		-
			SPT-12	16.5 - 18.0	1.3	12-21-21		-	
									-
- POKING I				SPT-13	18.0 - 19.5	1.5	11-16-15		_
A A									
			Stant	ec Consu	Iting Services	Inc			4/14/21

Page: 2 of 3

	Client Borehole Identification WBSP-21-04 Stantec Boring No. WBSP-21-04										
	Client		IKEC			Boring Locat	ion 4	50263.32 N;	568630.9	955 E	
F	Project N	Number	175539026			Surface Elev	ation 4	71.9 ft E	levation [Datum_NAVD8	8
	Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %		
Ele	evation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks	
_ -			SAND (SW), CCR brown, brown and	black,	SPT-14	19.5 - 21.0	1.5	12-16-20			_
_			moist, loose to dense, little to some gravel (Continued)		SPT-15	21.0 - 22.5	1.5	11-18-28			
					SPT-16	22.5 - 24.0	1.5	14-21-17			
_			-at 24.0', medium	dense	SPT-17	24.0 - 25.5	1.5	8-9-9			-
- -			-at 25.5', black sar gravel begins -at 26.0', wet	ndy	SPT-18	25.5 - 27.0	1.5	9-6-6			-
-					SPT-19	27.0 - 28.5	1.5	4-4-6			-
					ST-1	28.5 - 30.5	0.8	300 PSI			
-					SPT-20	30.5 - 32.0	1.4	3-3-4		Gravel=6%, Sand=85%, Fines=9%, Gs=2.90	-
-					SPT-21	32.0 - 33.5	1.4	4-4-6			-
4	37.1	34.8			SPT-22	33.5 - 35.0	1.5	3-3-4			-
-			LEAN CLAY (CL), with brown, moist t soft, low plasticity	gray to wet,	SPT-23	35.0 - 36.5	1.5	2-2-4			-
_											-
_			-silt with little plasti	city						Cand-00/	-
_			from 40.0' to 42.0'		ST-2	40.0 - 42.0	2.0	50 PSI		Sand=8%, Fines=92%	
											-
											-
					ST-3	45.0 - 47.0	1.8	400 PSI			

Page: 3 of 3

Client Bo	orehole I	dentification WBSP-	-21-04				Stantec Bo	ring No. V	VBSP-21-04
Client		IKEC			Boring Locat	tion 4	50263.32 N	; 568630.9	55 E
Project N	Number	175539026			Surface Elev	ation 4	71.9 ft E	Elevation D	atum NAVD88
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
- - -		LEAN CLAY (CL), with brown, moist soft, low plasticity (Continued)	gray to wet,						- - -
_ 	52 N			ST-4	50.0 - 52.0	1.6	600 PSI		_
_ 419.9 	52.0	No Refusal / Bottom of Hole Borehole was bac ground surface us	kfilled with ing a tremi	a mixture e pipe.	of cement-be	entonite (grout from th	ne bottom	of hole to the
-									_

Page: 1 of 1

Client Bo	orehole l	dentification WBSP-	21-05		Stantec Bor	ing No. \	WBSP-21-05			
Client		IKEC			Boring Locat	tion 4	49714.499 N	N; 568579).589 E	
Project N	Number	175539026			Surface Elev	ation 4	75.3 ft E	levation [Datum NAVD88	
Project N	Name	Clifty Creek WBSP	and LRCF	Closure	Date Started	1 2	/25/21 C	Completed	2/26/21	
Project	Location	Clifty Creek Power F	Plant, Madi	son, IN	Depth to Wa	ter N	/A C	ate/Time	N/A	
Logged	by <u>B</u> . F	lerries .			Depth to Wa	Depth to Water N/A Date/Time				
Drilling (Contract	or Stantec Consult	ing Service	es Inc.	Drill Rig Typ	e and ID	CME 55 T	rack Rig i	# 711	
Overbur	den Drill	ing and Sampling To	ols (Type a	and Size)	4.25" HSA,	2" Split	Spoon w/o I	iners, 3" S	Shelby Tubes	
Rock Dr	illing and	d Sampling Tools (Ty	pe and Siz	e) N/A						
Sampler	Sampler Hammer Type Automatic Weight 14					30 in	Effic	iency	88 % (Avg.)	
Borehole Azimuth N/A (Vertical)					Borehole In	clination	(from Vertic	cal)	Vertical	
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %		
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks	
475.3	0.0	Top of Hole SAND WITH GRA	\/EI							
		(SW), CCR, dark b	rown							
_		with black, moist, l very dense	oose to	SPT-1	0.0 - 1.5	1.4	4-8-9			
473.7	1.6	very delice								
4/3./	1.0	FAT CLAY (CH), g	rav with							
_		little black, moist, s trace to little boiler	soft,	SPT-2	1.5 - 3.0	1.4	3-2-2		_	
		trace to little boller	Siay							
472.3	3.0	No Deficed /								
		No Refusal / Bottom of Hole								
_									_	
_		Borehole was back	cfilled with	auger cu	ttings.				_	
_									_	
-									_	
-									-	

SUBSURFACE LOG (DRAFT) Page: 1 of 3

Client Bo	Client Borehole Identification WBSP-21-05A Stantec Boring No. WBSP-21-05A								
Client	JI EI IOIE I	IKEC	21 00/1		Boring Locat		49722.618	_	
					· ·	_			
1 1		175539026			Surface Elev	_			Datum NAVD88
Project N		Clifty Creek WBSP		·	Date Started			Completed	
	•	Clifty Creek Power F	Plant, Madi	son, IN	· ———			Date/Time	
Logged	by B. F	lerries			Depth to Wa	iter N	/A [Date/Time	N/A
Drilling (Contracto	or Stantec Consult	ing Service	es Inc.	Drill Rig Typ	e and ID	CME 55 T	rack Rig	# 711
Overbur	Overburden Drilling and Sampling Tools (Type and Siz					2" Split	Spoon w/o	liners, 3" \$	Shelby Tubes
Rock Dr	Rock Drilling and Sampling Tools (Type and Size) N								
Sampler	Sampler Hammer Type Automatic Weight 14					30 in	Effic	iency _	88 % (Avg.)
Borehole	Borehole Azimuth N/A (Vertical)					clination	(from Verti	cal)	Vertical
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
471.8	0.0	Top of Hole							
_		SAND (SW), CCR brown and black, r		SPT-1	0.0 - 1.5	1.2	2-2-4		_
		loose to very dens							
		little to some grave	3 1	SPT-2	1.5 - 3.0	1.5	13-21-28		_
-									_
-				SPT-3	3.0 - 4.5	1.5	10-16-19		_
L				SPT-4	45.60	1.5	11-13-12		_
				SP1-4	4.5 - 6.0	1.5	11-13-12		Gravel=4%,
				SPT-5	6.0 - 7.5	1.2	9-14-19		Sand=83%,
					0.0 7.0	1.2	0 11 10		Fines=13%,
-				SPT-6	7.5 - 9.0	1.4	9-10-14		-
-									_
				SPT-7	9.0 - 10.5	1.4	14-17-22		_
Ī				SPT-8	10.5 - 12.0	1.5	17-21-24		_
14/21									Gravel=8%, - Sand=82%,
G.GD1 2				SPT-9	12.0 - 13.5	1.5	23-36-33		Fines=10%, -
LO PHIC LO				ODT 10	10 5 15 0		00 00 07		Gs=2.85
WSM-GR2				SPT-10	13.5 - 15.0	1.5	20-30-37		
S.GPJ FF				SPT-11	15.0 - 16.5	1.5	20-37-27		_
				OF 1-11	10.0 - 10.0	1.5	20-31-21		_
- BORIN				SPT-12	16.5 - 18.0	1.5	20-28-19		_
					1210 1010				_
ORING LC				SPT-13	18.0 - 19.5	1.5	10-12-14		_
VA RO BK									
-			Stant	ec Consu	Iting Services	Inc	ı	1	4/14/21

Page: 2 of 3

Client Bo	orehole l	dentification WBSP-	21-05A				Stantec Bori	ng No. V	VBSP-21-05A
Client		IKEC			Boring Locat	tion 4	49722.618 N	l; 568465	.789 E
Project N	Number	175539026			Surface Elev	ation 4		levation [Datum_NAVD88
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
-		SAND (SW), CCR brown and black, r loose to very dens	noist, e, with	SPT-14	19.5 - 21.0 21.0 - 22.5	1.5	11-15-17 10-21-21		Gravel=6%, Sand 87%, Fines=7%, Gs=2.87
_		little to some grave (Continued)	31	SPT-16	22.5 - 24.0	1.5	10-11-15		-
				SPT-17	24.0 - 25.5	1.5	10-16-13		Gravel=3%,
-		at 27 01 was		SPT-18	25.5 - 27.0	1.5	9-11-9		Sand= 86%, Fines=11%, Gs=2.91
-		-at 27.0', wet		SPT-19	27.0 - 28.5	1.5	5-6-4		_
-				SPT-20 SPT-21	28.5 - 30.0 30.0 - 31.5	1.5	2-1-2 3-4-4		_
439.8	32.0	LEAN CLAY (CL),	dork	SPT-21	31.5 - 33.0	1.5	3-7-10		- -
-		brown, moist, firm low plasticity, some with silt, trace grav	to stiff, e silt to	SPT-23	33.0 - 34.5	1.5	5-11-17		-
- -				ST-1	35.0 - 37.0	2.0	300-PSI	44	Gs=2.63, DD=74.8 pcf
- - -				ST-2	40.0 - 42.0	2.0	700-PSI		- - - -
- -				ST-3	45.0 - 47.0	1.5	250-PSI	25	Sand=12%, Fines=88%, Gs=2.70, LL=29, PI=10, DD=87.8 pcf

SUBSURFACE LOG (DRAFT)

Page: 3 of 3

Client Bo	orehole I	dentification WBSP-	·21-05A				Stantec Bor	ing No. V	VBSP-21-05A
Client		IKEC			Boring Local	tion 4	49722.618 N	N; 568465	.789 E
Project I	Number	175539026			Surface Elev	vation 4	71.8 ft E	Elevation D	Datum_NAVD88_
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
- - -		LEAN CLAY (CL), brown, moist, firm low plasticity, som with silt, trace grav (Continued)	to stiff, e silt to						- - -
-				ST-4	50.0 - 52.0	2.0	300-PSI		-
419.8 - - - - - -	52.0	-at 51.9', gray with plasticity No Refusal / Bottom of Hole Borehole was bac ground surface us	kfilled with	a mixture				ne bottom	of hole to the
-									-
									_
-									-
-									-
_									-
-									-
-									_
_									-
-									-
-									

SUBSURFACE LOG (DRAFT) Page: 1 of 2

Client Bo	orehole I	dentification WBSP-21-0	6				Stantec Bor	ing No. \	WBSP-21-06
Client		IKEC			Boring Locat	tion 4	49958.925 N	-	
Project N	Number	175539026			Surface Elev	ation 4	48.7 ft E	Elevation [Datum NAVD88
Project N	Name	Clifty Creek WBSP and	LRCP	Closure	Date Started	I 3	/1/21 (Completed	d 3/1/21
Project	Location	Clifty Creek Power Plant,	, Madis	son, IN	Depth to Wa	iter 4	.0 ft [Date/Time	3/1/21
Logged	-		-		Depth to Wa	iter N	/A [Date/Time	N/A
Drilling (Contracto	or Stantec Consulting S	Service	es Inc.	Drill Rig Typ	e and ID	CME 55 T	rack Rig i	 #711
		ing and Sampling Tools (
Rock Dr	illing and	Sampling Tools (Type a	nd Siz	e) N/A		•	•		
Sampler	r Hamme	er Type Automatic	Weigh	nt 140	lb Drop	30 in	Effic	iency	88 % (Avg.)
Borehole	e Azimut	h N/A (Vertical)			Borehole In		 (from Vertic	cal)	Vertical
Litholo	ogy	Over	burden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	Description Roc	k Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
448.7	0.0	Top of Hole							_
_		SAND WITH GRAVEL (SW), CCR, dark brown	n	SPT-1	0.0 - 1.5	1.0	1-1-1		-
-		and black, moist, very loose to loose		SPT-2	1.5 - 3.0	0.6	1-1-1		-
-		loose to loose							Gravel=14%,
-		-at 4.0', wet		SPT-3	3.0 - 4.5	1.1	1-1-1		Sand=78%, Fines=8%,
-		-at 4.0 , wet		ST-1	4.5 - 6.5	0.0	50-PSI		Gs=2.82 –
_					4.0 - 0.0	0.0	30-1 31		-
-				ST-2	6.5 - 8.5	0.0			-
_									-
-				SPT-4	8.5 - 10.0	0.7	1-WH-WH		-
									_
				SPT-5	10.0 - 12.5	0.4	1-1-1		-
				SPT-6	12.5 - 14.0	1.3	1-1-3		
L				SPT-7	14.0 - 15.5	0.2	WH-WH-1		_
432.9	15.8			CDT 0	455 470	4.4	10/11/0/11/4		_
431.7	17.0	SILTY SAND WITH ¬ GRAVEL (SM), CCR	_	SPT-8	15.5 - 17.0	1.4	WH-WH-1		-
_		(boiler slag with fly ash gray with black, wet, ve		SPT-9	17.0 - 18.5	1.5	WH-WH-		_
		loose	;i y				WH		Gs=2.66,
_		SANDY SILT WITH	L	ST-3	18.5 - 20.5	2.0	50-PSI	33	DD=87.7 pcf _
427.3	21.4	GRAVEL (ML), CCR (fl ash), gray and dark gra		SPT-10	20.5 - 22.0	1.5	2-4-6		-
<u> </u>		wet, very soft							-
		FAT CLAY (CH), brown with light brown and little							-
		orange, moist, medium							-
:[stiff to very stiff	Stant	ec Consu	Iting Services	Inc			4/14/21

SUBSURFACE LOG (DRAFT)

Page: 2 of 2

Client Bo	orehole l	dentification WBSP-	21-06				Stantec Bori	ing No. V	VBSP-21-06
Client		IKEC			Boring Locat	tion 4	49958.925 N	I; 567996	.535 E
Project I	Number	175539026			Surface Elev	/ation 4		levation [Datum NAVD88
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
- - -		FAT CLAY (CH), brown with light brown and little orange, moist, medium stiff to very stiff (Continued) -at 27.5', gray and trace to some sand		ST-4 SPT-11	25.0 - 27.0 27.0 - 28.5	1.6 1.5	300-PSI 1-2-5	23	Gs=2.72, DD=103.2 pcf -
_				ST-5	30.0 - 31.7	1.6	300-PSI		
- -		-at 31.7', some gra starting at this dept rounded		SPT-12	31.7 - 33.2	1.2	3-4-6		- - -
<u> </u>				SPT-13	35.0 - 36.5	1.5	2-1-8		 _ _
-		-at 40.9', gravelly s from 40.9' to 41.3'	and	SPT-14	40.0 - 41.5	1.1	8-11-15	14	Gravel=27%, Sand=36%, Fines=37%, - Gs=2.71, LL=24, _ PI=7
- - -				SPT-15	45.0 - 46.5	0.1	5-7-6		- - - -
- _ _ 398.7	50.0								Gravel=44%, - Sand=48%,
397.2	51.5	POORLY GRADED GRAVEL WITH SA		SPT-16	50.0 - 51.5	1.5	11-12-32		Fines=8%, Gs=2.71 -
- - '-		(GP), gray with tan orange, moist to we dense, subangular rounded	and et, very						- - -
<u>_</u> -		No Refusal / Bottom of Hole							<u>-</u> -
-					Iting Services				4/14/21

SUBSURFACE LOG (DRAFT) Page: 1 of 2

Client Bo	orehole I	dentification WBSP-21-07				Stantec Bo	ring No. \	WBSP-21-07		
Client		IKEC		Boring Locat	tion 4	49470.783	N; 566835	5.777 E		
Project N	Number	175539026		Surface Elev	ation 4	65.6 ft I	Elevation l	Datum NAVD88		
Project N	Name	Clifty Creek WBSP and LRC	P Closure	Date Started	I 2	2/26/21	Complete	d 2/27/21		
Project	Location	Clifty Creek Power Plant, Ma	dison, IN	Depth to Wa	iter 1	7.3 ft I	Date/Time	2/26/21		
Logged	by <u>B</u> . F	lerries erries		Depth to Wa	iter N	I/A I	Date/Time	eN/A		
Drilling (Contracto	or Stantec Consulting Servi	ces Inc.	Drill Rig Typ	e and ID	CME 55 T	rack Rig	#711		
Overbur	den Drill	ing and Sampling Tools (Type	and Size)	4.25" HSA,	2" Split	Spoon w/o	liners, 3"	Shelby Tubes		
Rock Dr	Rock Drilling and Sampling Tools (Type and Size) N/A									
Sampler	· Hamme	er Type _Automatic Wei	ght 140	lb Drop	30 in	Effic	ciency _	88 % (Avg.)		
Borehole	e Azimut	h N/A (Vertical)		Borehole In	clinatior	n (from Verti	cal)	Vertical		
Litholo	ogy	Overburde	n Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %			
Elevation	Depth	Description Rock Cor	e RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks		
465.6	0.0	Top of Hole						_		
465.1	0.5	CLAY (CL-CH), stockpile	SPT-1	0.0 - 1.5	1.5	2-4-9		_		
_		SILTY SAND (SM), gray with little brown, moist, medium dense, trace to some clay	SPT-2	1.5 - 3.0	1.3	6-8-10	37	Gravel=5%, Sand=65%, Fines=30%,		
461.8 -	3.8	-at 3.0', less silt and more brown	SPT-3	3.0 - 4.5	1.5	8-7-4		Gs=2.59		
_		GRAVEL (GW), CCR, dark gray with black, moist, loose	SPT-4	4.5 - 6.0	0.0	1-2-2		_		
- 458.1	7.5	-at 6.0', silty material	SPT-5	6.0 - 7.5	0.4	3-3-3		-		
457.6	8.0	LEAN CLAY (CL), brown with gray, moist, soft	SPT-6	7.5 - 9.0	1.5	2-1-2		-		
_		SILTY SAND (SM), dark brown to black, moist, very loose to loose, with coal pieces	SPT-7	9.0 - 10.5	1.3	2-2-3		Gravel=5%, Sand=62%, Fines=33%, Gs=2.63		
- -		-lean clay from 9.8' to 10.0'	SPT-8	10.5 - 12.0	1.0	1-2-3		-		
452.6	13.0	-roots from 10.3' to 10.5' -at 10.5', with clay.	SPT-9	12.0 - 13.5	1.3	2-3-2		-		
-		SAND (SW), CCR, dark brown with black, moist, loose, some gravel	SPT-10	13.5 - 15.0	1.0	3-3-5		_		
-			SPT-11	15.0 - 16.5	0.0	7-7-6		-		
- 448.3	17.3		SPT-12	16.5 - 18.0	1.4	2-1-1		-		
-		SILTY SAND (SM), brown, moist to wet, loose, trace to some clay	SPT-13	18.0 - 19.5	1.0	3-1-3	16	Gravel=8%, Sand=70%, Fines=22%,		
		-from 19.0' to 19.5', mixed						Gs=2.69		

SUBSURFACE LOG (DRAFT)

Page: 2 of 2

Client Project Number Lithology Elevation Depth 4444.6 21.0		Overburden Rock Core	Sample #	Surface Elev	ation 40	65.6 ft E			_										
Lithology Elevation Depth	Description With ash	Rock Core	·	Depth	_		levation [Datum NAVD88	Client IKEC Boring Location 449470.783 N; 566835.777 E										
Elevation Depth	Description with ash	Rock Core	·		Poc Et														
-	with ash		RQD	Overbuilden Sample # Depth Nec. 11. Press.(psi) NMC %															
444.6 21.0				Run	Rec. Ft.	Rec. %	Depth	Remarks											
			SPT-14	19.5 - 21.0	0.1	4-6-5			_										
-	SAND (SW), CCR, brown with black an some orange, mois	nd	SPT-15	21.0 - 22.5	0.7	3-4-2			-										
441.6 24.0	loose, trace gravel	,	SPT-16	22.5 - 24.0	1.5	2-1-1			-										
-	FLY ASH (ML), CCI layered with black, v stiff to very stiff, silty	wet,	SPT-17	24.0 - 25.5	1.5	5-8-11	41	Sand=24%, Fines=76%, Gs=2.80	-										
			SPT-18	25.5 - 27.0	1.5	11-5-7			-										
437.6 28.0	FAT CLAY (CH), lig		ST-1	27.0 - 29.0	2.0	100-PSI	23	Gravel=3%, Sand=31%, Fines=66%, Gs=2.73	-										
-	brown, moist to wet to hard	, Sun	SPT-19	29.0 - 31.5	1.2	4-6-8		GC 2 C	_										
									-										
431.2 34.4 -	-BEDROCK, SHALI WITH CHERT, gray yellow		SPT-20	34.3 - 34.4	0.1	50/1"													
	Auger Refusal / Bottom of Hole	J																	
	Borehole was backt ground surface usir	filled with ng a tremi	a mixture e pipe.	of cement-be	ntonite ç	grout from th	e bottom	of hole to the	- - - - -										

SUBSURFACE LOG (DRAFT) Page: 1 of 2

Client Bo	orehole l	dentification WBSP-2	21-08				Stantec Bo	ring No. <u> </u>	NBSP-21-08
Client		IKEC			Boring Local	tion <u>4</u>	48675.992 I	N; 566107	7.327 E
Project I	Number	175539026			Surface Elev	vation 4	51.3 ft E	Elevation I	Datum_NAVD88_
Project I	Name	Clifty Creek WBSP	and LRCF	Closure	Date Started	2	/27/21 (Complete	d2/27/21
Project	Location	Clifty Creek Power P	lant, Madi	son, IN	Depth to Water 7.0 ft D		Date/Time	2/27/21	
Logged	by B. F	lerries erries			Depth to Wa	iter N	//A [Date/Time	eN/A
Drilling (Contracto	or _ Stantec Consulti	ng Service	es Inc.	Drill Rig Typ	e and ID	CME 55 T	rack Rig	#711
Overbur	den Drill	ing and Sampling Too	ols (Type a	and Size)	4.25" HSA,	2" Split	Spoon w/o	liners, 3" \$	Shelby Tubes
Rock Dr	illing and	d Sampling Tools (Туլ	oe and Siz	e) <u>N/A</u>					
Sample	r Hamme	er Type _Automatic	Weigh	nt <u>140</u>	lb Drop	30 in	Effic	eiency _	88 % (Avg.)
Borehole	e Azimut	h _ N/A (Vertica	I)		Borehole In	clination	(from Verti	cal)	Vertical
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks
451.3	0.0	Top of Hole							_
		SAND WITH GRAV (SW), CCR, dark b		SPT-1	0.0 - 1.5	1.1	1-1-1		
-		and black, moist, lo some roots from gi							-
-		surface to approxin		007.0	4.5.00				-
		4.5'		SPT-2	1.5 - 3.0	0.3	WH-WH-1		
-									-
				SPT-3	3.0 - 4.5	1.4	3-2-1		_
-				SPT-4	4.5 - 6.0	0.9	1-1-2		_
									_
				ODT -	00 75				
444.0	7.3	- at 7.0' wat	_	SPT-5	6.0 - 7.5	1.5	3-3-3		-
		-at 7.0', wet LEAN CLAY (CL),	liaht						
		brown, moist, medi	um stiff	SPT-6	7.5 - 9.0	1.4	4-6-6		-
<u> </u>		to stiff, low to medi plasticity, trace san							-
									 Sand=15%,
				ST-1	9.0 - 11.0	1.7	50-PSI	26	Fines=85%, Gs=2.72, LL=29,
-									PI=9
2									
_									-
									_
3									
									-
			Stant	ec Consu	Ilting Services	Inc			4/14/2

SUBSURFACE LOG (DRAFT)

Page: 2 of 2

Client Bo	Client Borehole Identification WBSP-21-08 Stantec Boring No. WBSP-21-08									
Client		IKEC			Boring Locat	tion 4	48675.992 N	l; 566107	.327 E	
Project I	Number	175539026			Surface Elev	ation 4		levation [Datum_NAVD88	
Litholo	gy		Overburden	Sample #	Depth	Rec. Ft.	Blows/ Press.(psi)	NMC %		
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Rec. %	Depth	Remarks	
-		LEAN CLAY (CL), brown, moist, med to stiff, low to med plasticity, trace san (Continued)	lium stiff ium	ST-2	15.0 - 17.0	2.0	100-PSI		Gravel=1%, Sand=14%, Fines=85%, Gs=2.71 –	
424.6	10.7								_	
431.6 - 431.1	19.7 20.2	BEDROCK		SPT-7	20.0 - 20.2	0.2	50/2"		_	
		Auger Refusal /		SF 1-1	20.0 - 20.2	U.Z	J0/2			
_		Bottom of Hole							-	
-									_	
_									-	
_		Borehole was bac	kfilled with	a miyture	of cement-he	ntonite (arout from th	e hottom	of hole to the -	
		ground surface us	ing a tremi	e pipe.	or comeni-be	mornic g	grout morn ar	C DOLLOTT	of fiole to the	
_									_	
_									_	
_									_	
_										
_									-	
L									_	
L									-	
_									_	
-									-	
-									-	
<u> </u>									_	

SUBSURFACE LOG (DRAFT) Page: 1 of 1

Client Bo	orehole I	dentification WBSP-	21-09				Stantec Bo	ring No. \	WBSP-21-09
Client		IKEC			Boring Locat	tion 4	50762.229	- N; 567212	2.578 E
Project I	Number	175539026			Surface Elev	ation 4	84.9 ft E	Elevation	Datum NAVD88
Project I	Name	Clifty Creek WBSP	and LRCF	Closure	Date Started	- I 3	/8/21 (Complete	d 3/8/21
Project	Location	Clifty Creek Power F	Plant, Madi	son, IN	Depth to Wa	ter 5	.0 ft [Date/Time	e 3/8/21
Logged	by B. F	lerries			Depth to Wa	ter N	/A [Date/Time	e N/A
Drilling (Contracto	or Stantec Consult	ing Service	es Inc.	Drill Rig Typ	e and ID	CME 55 T	rack Rig	#711
Overbur	den Drilli	ing and Sampling To	ols (Type a	and Size)	4.25" HSA,	2" Split	Spoon w/o	liners, 3"	Shelby Tubes
Rock Dr	illing and	Sampling Tools (Ty	pe and Siz	e) N/A		•	•		
Samplei	r Hamme	er Type Automatic	Weigl	nt 140	lb Drop	30 in	Effic	eiency	88 % (Avg.)
Borehole				-	Borehole In			-	Vertical
Litholo	ogy		Overburden	Sample #	Depth	Rec. Ft.	Blows/	NMC %	
Elevation	Depth	Description	Rock Core	RQD	Run	Rec. Ft.	Press.(psi) Rec. %	Depth	Remarks
484.9	0.0	Top of Hole							
\484.7_/	_0.2_/	TOPSOIL		SPT-1	0.0 - 1.5		1-3-3		_
_		SILTY SAND (SM)							_
_		to dark brown, moi medium dense, tra	ce clay	SPT-2	1.5 - 3.0		4-7-10		_
_		-at 0.4', gravel sea	m of						_
479.9	5.0	0.2'							_
_		SAND (SP), grayis		SPT-3	5.0 - 6.5		13-25-28		
		brown, moist to we dense, some grave							
_		to little clay, with co	oal						
_		pieces of about 1/1 3".	16" to	SPT-4	7.5 - 9.0		6-6-7		-
_		.							-
_		-at 10.0', fine sand	for 0.4'	SPT-5	10.0 - 11.5		1-2-3		_
_							0		_
472.2	12.7								-
_		FAT CLAY (CH), g brown, moist, firm,		SPT-6	12.5 - 14.0		3-5-8		-
_		sand and gravel	liace						-
 469.0	15.9			SPT-7	15.0 - 15.9		16-50/5"		_
_		Auger Refusal /							-
_		Bottom of Hole							-
_									-
_									-
-									_
_		Borehole was back	kfilled with	a mixture	of cement-be	ntonite o	grout from th	ne bottom	of hole to the
_		ground surface usi	ing a tremi	e pipe.		`	-		-
_									-
_									-

APPENDIX F

Slope Stability Analysis

West Boiler Slag Pond Phases 2-4 Perimeter Dike Stability

Closure Plan West Boiler Slag Pond Clifty Creek Station Madison, Jefferson County, Indiana

April 16, 2021

Prepared for:

Indiana-Kentucky Electric Corporation (IKEC)

Prepared by:

Stantec Consulting Services Inc.

Table of Contents

1.0	INTRODUCTION	. 1
2.0	GLOBAL SLOPE STABILITY ANALYSES	
-		
2.1	LOAD CASES, GROUNDWATER CONDITIONS, AND DESIGN CRITERIA	
	2.1.1 Long-Term	2
	2.1.2 Long-Term High Water	
	2.1.3 Seismic (Pseudo-static)	
	2.1.4 Post-Earthquake	3
2.2	SECTION GEOMETRY	. 3
	2.2.1 Station 105+00	
	2.2.2 Station 122+00	
2.3	MATERIAL PROPERTIES	
2.4	ANALYSIS RESULTS	
2.4	ANALYSIS RESULTS	. c
3.0	CONCLUSION	_
3.0	CONCLUSION	- 1
4.0	LIMITATIONS	-
4.0		. 1
5.0	REFERENCES	ç
J.U	NEI ENEROLO	٠,
LIST	OF TABLES	
Tabla	2.1: Evaluated Load Cases	,
	2.2: Soil Borings and CPTs used for Stratigraphy Definition	
	2.3: Material Parameters for Slope Stability Analysis	
Table	2.4. Computed Slope Stability Factors of Safety	6

LIST OF ATTACHMENTS

ATTACHMENT A SLOPE STABILITY ANALYSES OUTPUTS

i

INTRODUCTION

1.0 INTRODUCTION

The Clifty Creek Generating Station's West Boiler Slag Pond Dam (WBSP), owned and operated by the Indiana Kentucky Electric Corporation (IKEC), is located in Jefferson County, Indiana. The facility is bordered in the south by the Ohio River, on the east by Big Clifty Creek and in the northwest by a bedrock outcrop known as the Devil's Backbone. The WBSP served as a settling facility for sluiced bottom ash produced by the generating plant. In addition to the process flows from the power plant, approximately 510 acres drains to the facility. The WBSP will no longer receive bottom ash and closure documentation is being prepared.

Stantec Consulting Services, Inc. (Stantec) was contracted by the IKEC to prepare construction design documents to support the closure of the WBSP. The purpose of this report is to present the results of slope stability analyses of Phases 2-4 of the WBSP closure. Closure will be executed by excavating, filling and grading existing bottom ash in the pond to create positive drainage and will include the installation of a cover system. The cover system, from top to bottom, will consist of 6 inches of topsoil, 2.5 feet of cover soil, a geocomposite drainage layer, and a 40-mil thickness linear low-density polyethylene (LLDPE) flexible membrane liner (FML) overlying the in-place bottom ash coal combustion residual (CCR) material.

This report documents the information reviewed from previous field explorations and laboratory testing and geotechnical engineering analyses performed by Stantec to support the closure requirements. The scope of work includes the following:

- Existing documentation review
- Slope stability analyses of sections 105+00, 122+00 in long-term, long-term high water, and seismic loading conditions

2.0 GLOBAL SLOPE STABILITY ANALYSES

The global slope stability was evaluated using conventional, limit equilibrium, method of slices analysis as implemented in the SLOPE/W module of GeoStudio 2021. Spencer's method was selected for the analyses as this method includes all interslice forces and satisfies both moment and force equilibrium. A slope stability analysis includes a search for the most critical slip surface, corresponding to the lowest factor of safety. Several options are available in SLOPE/W to facilitate the search for the critical failure surface. In the analyses presented in this report, potential circular failure surfaces were generated using the "entry and exit" method. Considering shallow, surficial failures pose little risk to the overall stability of the slopes, and are usually considered as a potential maintenance issue, a minimum slip surface depth of 3 feet was specified in the analyses to force the evaluation on the deeper potential failure surfaces.

When a soil at the entry of a potential failure surface is assigned with a cohesion value (c>0) in a slope stability analysis, tensile stresses are often computed between the slices in this area. In the field, tensile

WEST BOILER SLAG POND PHASES 2-4 PERIMETER DIKE STABILITY

GLOBAL SLOPE STABILITY ANALYSES

stresses result in the opening of a tension crack, reducing the lateral stresses to zero. Because tension results in a stabilizing force at the head of the sliding mass, it is unconservative to have tensile stresses between the slices in a slope stability analysis. A tension crack line was used in the analysis to eliminate the tensile inter-slice forces. Multiple iterations were performed to define the appropriate tension crack line.

2.1 LOAD CASES, GROUNDWATER CONDITIONS, AND DESIGN CRITERIA

Global slope stability analyses were performed on the final grading of the Phases 2-4 WBSP closure. The evaluated load cases, along with the target factors of safety, are summarized in Table 2.1. Target factors of safety were selected per criteria presented in the Indian Administrative Code (Table 1 of 329 IAC 10-15-8). If the slope were to fail, it would cause major environmental impact due to material being released into the Ohio River. There is small uncertainty of soil strengths with the laboratory testing performed (discussed in Stantec 2016). Therefore, the minimum factors of safety used for these analyses were 1.5 for static conditions and 1.3 for seismic, post-earthquake conditions.

Target Factor of Load Case Slope **Analysis** Safety Drained, effective Long-term 1.5 stress High River Long-Drained, effective 1.5 Term stress Seismic (Pseudo-1.0 Undrained, total stress Perimeter Dike static) Slope Stability Residual strengths for liquefied CCR material Seismic (Post-Undrained, total stress 1.3 Earthquake) reduced 20% for nonliquefied soils

Table 2.1: Evaluated Load Cases

2.1.1 Long-Term

This analysis was performed to evaluate the stability of the final grading under the long-term, drained condition after excess pore pressures have dissipated. Drained, effective stress strength parameters were used in the analysis. A long-term piezometric line was applied to the slope stability models assumed to be five feet below the lowest point of the proposed closure liner.

2.1.2 Long-Term High Water

This analysis was performed to evaluate the stability of the embankment dike under a sustained highwater condition in the Ohio River. Drained, effective strength parameters were used in the analysis. The high water piezometric line was assigned based on an anticipated 500-yr storm water surface elevation of

WEST BOILER SLAG POND PHASES 2-4 PERIMETER DIKE STABILITY

GLOBAL SLOPE STABILITY ANALYSES

469.7 feet in the Ohio River. Because the riverside slope is subjected to an external stabilizing pressure from water, only the pond side slope is being analyzed under this loading case.

2.1.3 Seismic (Pseudo-static)

This analysis was performed to evaluate the stability of the embankment dike and final grading under seismic loading from a design earthquake event. Undrained, pseudo-static strength parameters were assigned to the low permeability materials in the analysis. Groundwater was assumed to be at the long-term water level.

The US Geological Survey (USGS) Unified Hazard Tool was used to determine the site's peak ground acceleration (PGA) corresponding to a seismic event with a return period of 2,475 years and a peak rock acceleration at the site of 0.0882 g was obtained. Haynes-Griffin and Franklin (1984) recommended that half of the peak rock acceleration be used as the seismic coefficient in the pseudo-static slope stability analysis. Based on that, a seismic coefficient of 0.0441 (=0.5 x 0.0882) was selected. The selected seismic coefficient was rounded and a horizontal seismic coefficient of 0.045 was used in SLOPE/W. The program calculates seismic force (=column weight x seismic coefficient) and applies to each column in the sliding mass.

Note that the pseudo-static stability analysis should only be considered as an index of the seismic resistance available in a structure not subject to build-up of pore pressure from shaking. A pseudo-static factor of safety greater than 1.0 is very strong evidence that there would be little or no damage to the dam from an earthquake (FEMA 2005).

Groundwater was assumed to be at the long-term water level which was assumed to be 5 feet below the proposed closure liner.

2.1.4 Post-Earthquake

This analysis was performed to evaluate the stability of the Bottom Ash (CCR) material within the WBSP for purposes of evaluating response to the design seismic event and to evaluate the potential for a release of CCR offsite. The assumption for performing this analysis is that the saturated very loose Bottom Ash (CCR) deposits will undergo pore pressure build-up and liquefy during the design seismic event. A post-earthquake, residual strength (in the form of Residual Shear Strength ratio as discussed in Section 2.3) was applied to the saturated Bottom Ash and Fly Ash (CCR) layers. Undrained, total stress strength parameters were reduced by 20% and applied to non-liquifiable soils to account for potential strength loss due to earthquake shaking.

Groundwater was assumed to be at the long-term water level which was assumed to be 5 feet below the proposed closure liner.

2.2 SECTION GEOMETRY

Two representative cross sections were selected for slope stability analyses: Sta. 105+00 and Sta. 122+00, along the alignment of Phases 2-4. Locations of the selected cross sections are shown in the drawings. The subsurface profiles

GLOBAL SLOPE STABILITY ANALYSES

modeled in the analyses for each cross section were selected based on historical data from previous explorations and the Stantec 2021 geotechnical explorations. Soil borings and CPTs selected for definition of the subsurface lithology for each cross section are shown in

Table 2.2 below.

Table 2.2: Soil Borings and CPTs used for Stratigraphy Definition

Cross Section	Soil Boring	СРТ
105+00	Stantec B-1, B-2, WBSP- 21-08, and AGES WBSP- 15-10	N/A
122+00	Stantec B-5, B-6, AGES WBSP-15-07	CPT-3-GEO, CPT-3A-GEO

2.2.1 Station 105+00

This section is located in Phase 4B in the southwest end of the WBSP and extends from north to south until it reaches the Ohio River. This section was selected to evaluate the stability of the existing embankment dike adjacent to the closure by removal area of the site and is the critical perimeter dike section when the Ohio River reaches the 500-yr storm water surface elevation.

2.2.2 Station 122+00

This section is located in Phase 4A in the south end of the WBSP and extends from north to south until it reaches the Ohio River. This section was selected to evaluate the stability of the final grading along the existing embankment dike with modified CCR pond grading.

2.3 MATERIAL PROPERTIES

Material strength parameters used in the stability analyses of this study are summarized in **Error! Reference source not found.** below. These parameters were selected based on the field exploration results, reviewed historical geotechnical information, and engineering judgement. Further refinements to these parameters are anticipated as the 2021 laboratory testing results become available.

WEST BOILER SLAG POND PHASES 2-4 PERIMETER DIKE STABILITY

GLOBAL SLOPE STABILITY ANALYSES

Table 2.3: Material Parameters for Slope Stability Analysis

	Unit	Drained Shear	Strengths	Undrained Shear Strengths	Residual Strength
Material	Weight	Effective Friction Angle	Effective Cohesion c'	Su	Sr
	(pcf)	(deg.)	(psf)	(psf)	(psf)
Embankment	129	27 ¹	500 ¹	1250 ²	-
Lean Clay with Sand	119	27 ¹	300 ¹	1000 ²	-
Gravel with Silt and Sand	130	35 ³	О 3	-	-
Bottom Ash (CCR)	115	28 4	0 4	-	$S_r / \sigma_{vc}' = 0.04^{-5}$
Sandy Silt/Silty Sand	125	30 ³	0 3	-	-
Fat Clay	119	27 ⁶	300 ⁶	1000 ⁶	-
Compacted Clay Fill	130	27 ⁷	300 ⁷	1250 ⁷	-
Compacted CCR Fill	115	31 ⁸	0 8	-	-
Cover Soil	125	27 ⁹	300 ⁹	1000 ⁹	-

Notes:

Soil strength parameters were derived in the Stantec February 2016 CCR Rule Stability Analyses report and were amended for the current analyses based on further review of the 2016 testing and the 2021 field exploration. The 2016 parameters were developed using CU triaxial test data for the Embankment Fill and Lean Clay with Sand soils. Drained and undrained shear strengths for the Bottom Ash (CCR) material were taken from SPT correlations for very loose deposits. Strength parameters for the proposed Cover Soil were taken to be identical to the parameters of the Lean Clay with Sand soil and its unit weight was selected based on preliminary standard Proctor testing data of a potential borrow source soil. Undrained shear strength parameters for coarse-grained (or cohesionless) material were taken to be identical to the drained shear strength parameters.

¹ Based on a review of the CU test data included in the 2016 report.

² Based on available CPT and SPT data. Use 80% of the strength for post-earthquake.

³ Values derived in the 2016 report. Use 80% of the strength for post-earthquake.

⁴ Values derived in the 2016 report.

⁵ Residual strength of liquefied soil based on SPT data for post-earthquake.

⁶ Use Lean Clay values. Will update once 2021 laboratory test results become available.

⁷ Use Lean Clay and Embankment values.

⁸ Based on typical compacted CCR values from past experience. Use 80% of the strength for post-earthquake.

⁹ Use Lean Clay values.

WEST BOILER SLAG POND PHASES 2-4 PERIMETER DIKE STABILITY

GLOBAL SLOPE STABILITY ANALYSES

The residual strength of liquefied Bottom Ash (CCR) layers for post-earthquake evaluations was estimated by selecting a conservative Residual Shear Strength ratio, τ/σ (Shear Strength/Effective Overburden Stress Ratio)) of 0.04 based on correlations between corrected SPT blow counts and the Residual Shear Strength Ratio (Idriss and Boulanger, 2008). Based on the SPT blowcounts from existing boring data, a representative SPT (N₁)_{60-cs} value of 3 was used to select the Residual Shear Strength ratio for the Bottom Ash (CCR).

2.4 ANALYSIS RESULTS

The computed factors of safety of slope stability for the Phase 2-4 WBSP closure grading under the evaluated loading conditions are summarized in **Error! Reference source not found.**, along with the target factors of safety according to the established design criteria for the project. The computed output plots, depicting the predicted critical failure surfaces, are presented in Attachment A.

Table 2.4: Computed Slope Stability Factors of Safety

Sta.	Location	Loading Condition	Computed Slope Stability Factor of Safety	Target Factor of Safety
	Dike - Pond Side	Long Term	2.60	1.5
	Dike - Riverside	Long Term	2.83	1.5
Sta. 105+00	Dike - Pond Side	Long Term High Water	2.07	1.5
	Dike - Pond Side	Seismic (Pseudo-Static)	1.33	1.0
	Dike - Riverside	Seismic (Pseudo-Static)	1.48	1.0
	Dike - Pond Side	Long Term	2.79	1.5
	Dike - Riverside	Long Term	2.62	1.5
	Dike - Pond Side	Long Term High Water	2.07	1.5
Sta. 122+00	Dike - Pond Side	Seismic (Pseudo-Static)	1.67	1.0
	Dike - Riverside	Seismic (Pseudo-Static)	1.63	1.0
	Dike - Pond Side	Seismic (Post-earthquake)	1.69	1.3
	Dike - Riverside	Seismic (Post-earthquake)	1.59	1.3

CONCLUSION

3.0 CONCLUSION

The calculated factors of safety for the analyzed cases meet the minimum factors of safety required by 329 IAC 10-15-8. This analysis is based on the information discussed in this report and the interpretation of the subsurface conditions encountered at the site. No warranties can be made regarding the continuity of conditions. If future design changes are made, Stantec should be notified so that such changes can be reviewed, and the analysis amended as necessary.

4.0 LIMITATIONS

This report was prepared by Stantec Consulting Services, Inc. (Stantec) for IKEC. Stantec's professional services have been performed using a degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical consultants practicing in this or similar localities. No other warranty, express or implied, is made as to the professional advice included in this report. This geotechnical report has been prepared for IKEC and is to be used solely for the design of the proposed Phases 2 through 4 Closure for the West Boiler Slag Pond at the Clifty Creek Station in Jefferson County, Indiana and may not contain sufficient information for use by other parties.

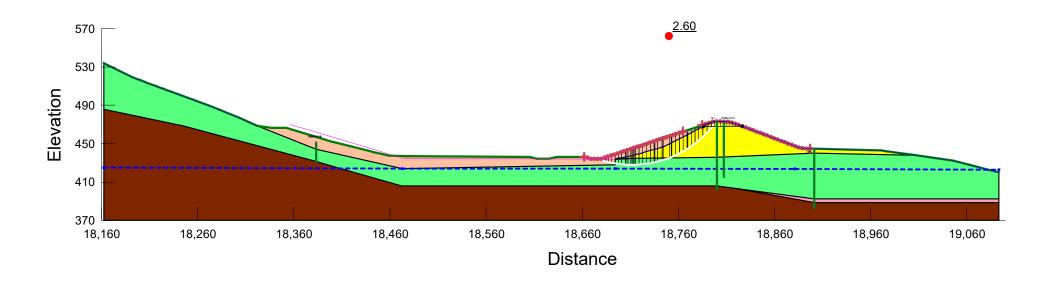
The recommendations provided in this geotechnical report are based upon our understanding of the described project information and our interpretation of available published information and previous field and laboratory investigations. We have made our recommendations based upon experience with similar subsurface conditions. The recommendations apply to the specific project discussed in this report; therefore, any change in the configuration of the proposed design or any change to the site grades should be provided to us so that we can review our conclusions and recommendations and make any necessary modifications.

The recommendations provided in this report are based upon the assumption that the necessary geotechnical observations and testing during construction will be performed by our firm during the entire duration of the construction. The field observation services are considered a continuation of the geotechnical investigation and are essential to verify that the actual soil conditions are as expected. This also provides for the procedure whereby IKEC may be advised of unexpected or changed conditions that would require modifications of our original recommendations.

5.0 REFERENCES

- American Electric Power Service Corporation, (1953). West Boiler Slag Pond Drawings and Boring Logs. Indiana Kentucky Electric Corporation, Clifty Creek Plan, Madison, Indiana.
- Applied Geology and Environmental Science, Inc. (2016). Coal Combustion and Residuals Regulation Monitoring Well Installation Report, Indiana-Kentucky Electric Corporation, Clifty Creek Station, Madison, Indiana.
- D. W. Kozera, Inc. (2019). Geotechnical Engineering Study, Clifty Creek Plant, Material Handling Pad, IKEC Power Plant, Madison, Indiana.
- Geotechnology, Inc. (2020). Geotechnical Data Report IKEC Clifty Creek Boiler Slag Project, Madison, Indiana.
- Federal Emergency Management Agency (FEMA) (2005). Federal Guidelines for Dam Safety, Earthquake Analyses and Design of Dams.
- Hynes-Griffin M. E., Franklin A. G. (1984). Rationalizing the seismic coefficient method. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, Miscellaneous Paper GL-84-13, 21 pp.
- Idriss, I.M. and Boulanger R.W. (2008). Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute, Oakland, CA.
- Naval Facilities Engineering Command (NAVFAC) (1986). Soil Mechanics. Design Manual 7.01, Alexandria, Virginia. September.
- Peck, R.B., Hanson, W.E., and Thornburn, T.H. (1974). Foundation Engineering. 2nd ed., John Wiley and Sons, New York.
- Stantec Consulting Services, Inc. (2016). Report of CCR Rule Stability Analyses, AEP Clifty Creek Power Plant Boiler Slag Pond Dam and Landfill Runoff Collection Pond, American Electric Power, Columbus, Ohio.
- U.S. Army Corps of Engineers (2003). Slope Stability. EM 1110-2-1902, October 31.

ATTACHMENT A SLOPE STABILITY ANALYSES OUTPUTS

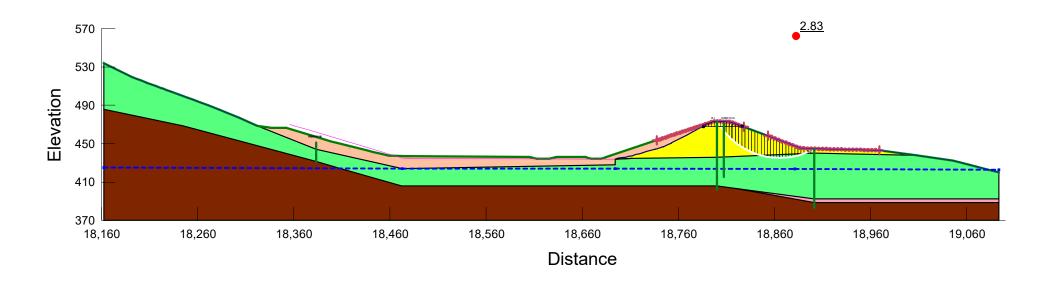

Name: Long Term Pond Side

Method: Spencer

Slip Surface: Entry and Exit

FOS: 2.60

Color	Name	Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)	Piezometric Line
	Bedrock	Bedrock (Impenetrable)				1
	Embankment (Drained)	Mohr-Coulomb	129	500	27	1
	Fill (Drained)	Mohr-Coulomb	130	300	27	1
	Gravel with Silt and Sand	Mohr-Coulomb	130	0	35	1
	Lean Clay with Sand (Drained)	Mohr-Coulomb	119	300	27	1

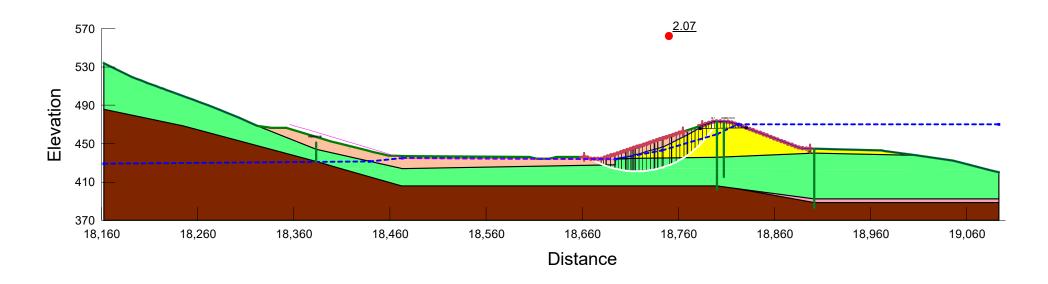

Name: Long Term Riverside

Method: Spencer

Slip Surface: Entry and Exit

FOS: 2.83

Color	Name	Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)	Piezometric Line
	Bedrock	Bedrock (Impenetrable)				1
	Embankment (Drained)	Mohr-Coulomb	129	500	27	1
	Fill (Drained)	Mohr-Coulomb	130	300	27	1
	Gravel with Silt and Sand	Mohr-Coulomb	130	0	35	1
	Lean Clay with Sand (Drained)	Mohr-Coulomb	119	300	27	1


Name: Long Term Pond Side High water

Method: Spencer

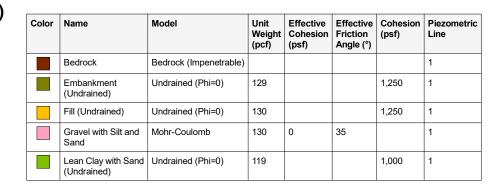
Slip Surface: Entry and Exit

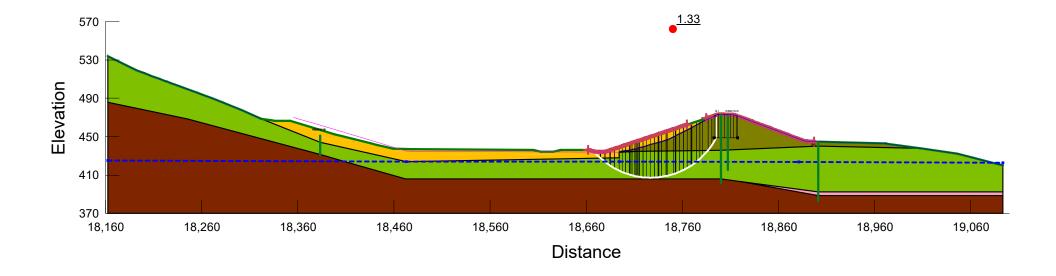
FOS: 2.07

Color	Name	Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)	Piezometric Line
	Bedrock	Bedrock (Impenetrable)				1
	Embankment (Drained)	Mohr-Coulomb	129	500	27	1
	Fill (Drained)	Mohr-Coulomb	130	300	27	1
	Gravel with Silt and Sand	Mohr-Coulomb	130	0	35	1
	Lean Clay with Sand (Drained)	Mohr-Coulomb	119	300	27	1

Name: Seismic Pond Side (Drained & Undrained)

Method: Spencer


Slip Surface: Entry and Exit


FOS: 1.33

Horz Seismic Coef.: 0.045

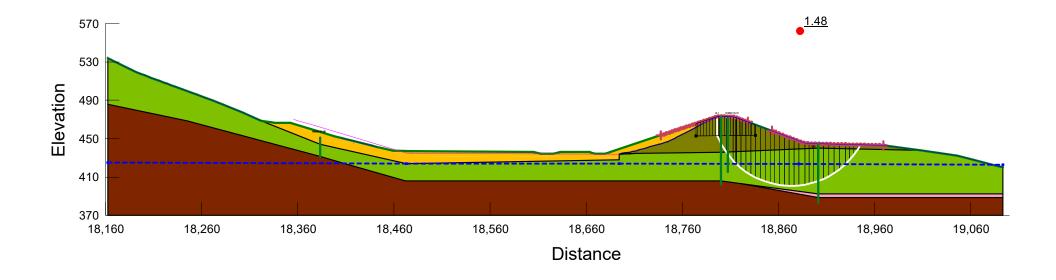
Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties.

The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling. No warranties can be made regarding the continuity of subsurface conditions.

Name: Seismic Riverside (Drained & Undrained)

Method: Spencer

Slip Surface: Entry and Exit

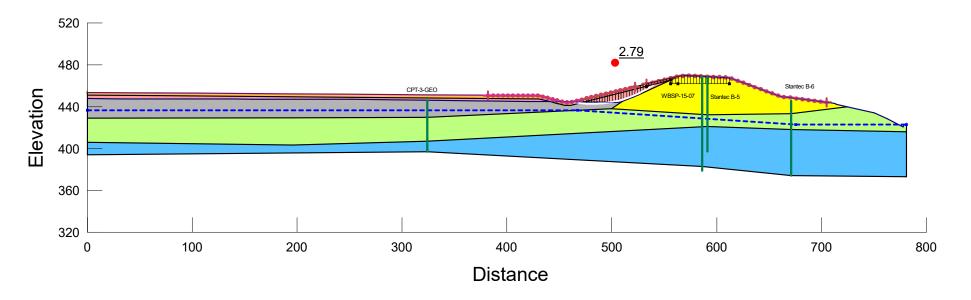

FOS: 1.48

Horz Seismic Coef.: 0.045

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling.

No warranties can be made regarding the continuity of subsurface conditions.

Color	Name	Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)	Cohesion (psf)	Piezometric Line
	Bedrock	Bedrock (Impenetrable)					1
	Embankment (Undrained)	Undrained (Phi=0)	129			1,250	1
	Fill (Undrained)	Undrained (Phi=0)	130			1,250	1
	Gravel with Silt and Sand	Mohr-Coulomb	130	0	35		1
	Lean Clay with Sand (Undrained)	Undrained (Phi=0)	119			1,000	1

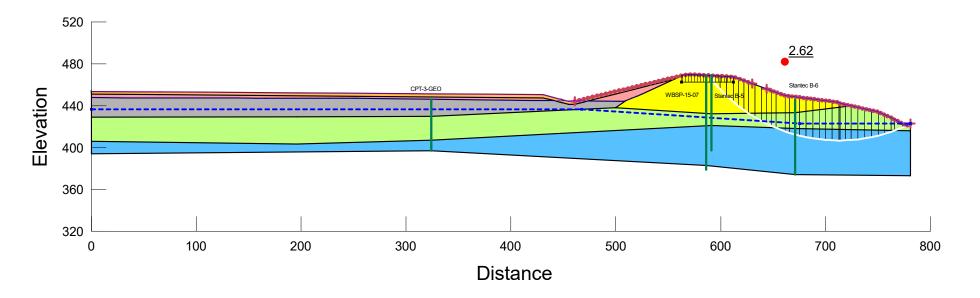

Name: Long Term Pond Side

Method: Spencer

Slip Surface: Entry and Exit

FOS: 2.79

Color	Name	Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)	Piezometric Line
	Bottom Ash	Mohr-Coulomb	115	0	28	1
	CCR Fill	Mohr-Coulomb	115	0	31	1
	Cover Soil (Drained)	Mohr-Coulomb	125	300	27	1
	Embankment Fill (Drained)	Mohr-Coulomb	129	500	27	1
	Lean Clay with Sand (Drained)	Mohr-Coulomb	119	300	27	1
	Sandy Silt	Mohr-Coulomb	125	0	30	1

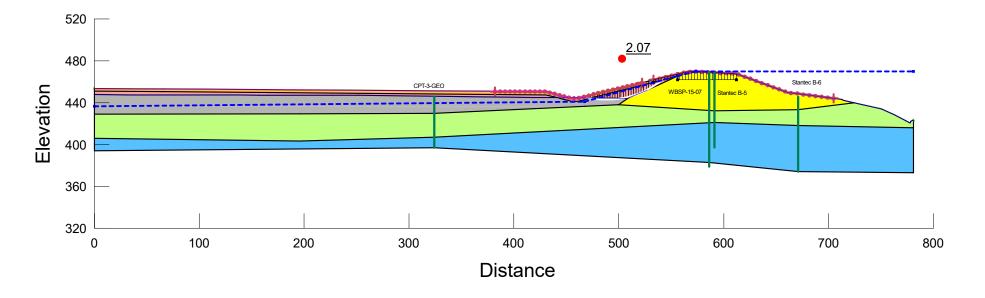

Name: Long Term Riverside

Method: Spencer

Slip Surface: Entry and Exit

FOS: 2.62

Color	Name	Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)	Piezometric Line
	Bottom Ash	Mohr-Coulomb	115	0	28	1
	CCR Fill	Mohr-Coulomb	115	0	31	1
	Cover Soil (Drained)	Mohr-Coulomb	125	300	27	1
	Embankment Fill (Drained)	Mohr-Coulomb	129	500	27	1
	Lean Clay with Sand (Drained)	Mohr-Coulomb	119	300	27	1
	Sandy Silt	Mohr-Coulomb	125	0	30	1


Name: Long Term Pond Side High water

Method: Spencer

Slip Surface: Entry and Exit

FOS: 2.07

Color	Name	Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)	Piezometric Line
	Bottom Ash	Mohr-Coulomb	115	0	28	1
	CCR Fill	Mohr-Coulomb	115	0	31	1
	Cover Soil (Drained)	Mohr-Coulomb	125	300	27	1
	Embankment Fill (Drained)	Mohr-Coulomb	129	500	27	1
	Lean Clay with Sand (Drained)	Mohr-Coulomb	119	300	27	1
	Sandy Silt	Mohr-Coulomb	125	0	30	1

Name

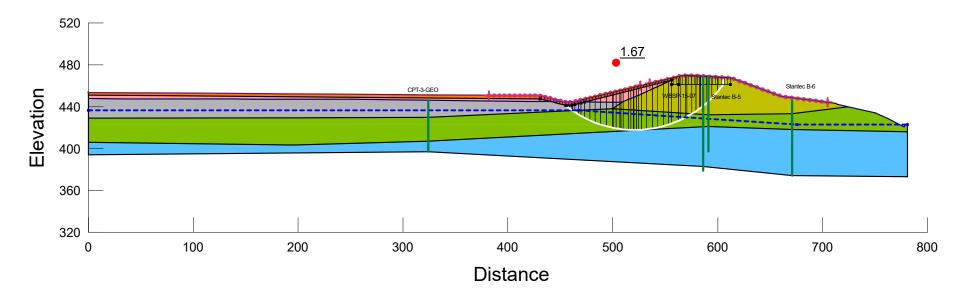
Color

Model

Name: Seismic Pond Side (Drained & Undrained)

Method: Spencer

Slip Surface: Entry and Exit


FOS: 1.67

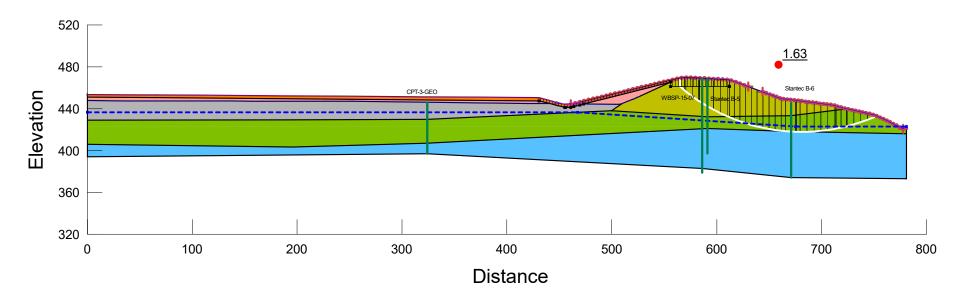
Horz Seismic Coef.: 0.045

		(pcf)	(631)	(psf)	Angle (°)	Line
Bottom Ash	Mohr-Coulomb	115		0	28	1
CCR Fill	Mohr-Coulomb	115		0	31	1
Cover Soil (Undrained)	Undrained (Phi=0)	125	1,000			1
Embankment Fill (Undrained)	Undrained (Phi=0)	129	1,250			1
Lean Clay with Sand (Undrained)	Undrained (Phi=0)	119	1,000			1
Sandy Silt	Mohr-Coulomb	125		0	30	1

Cohesion Effective Effective Piezometric

Cohesion Friction Line

Name: Seismic Riverside (Drained & Undrained)

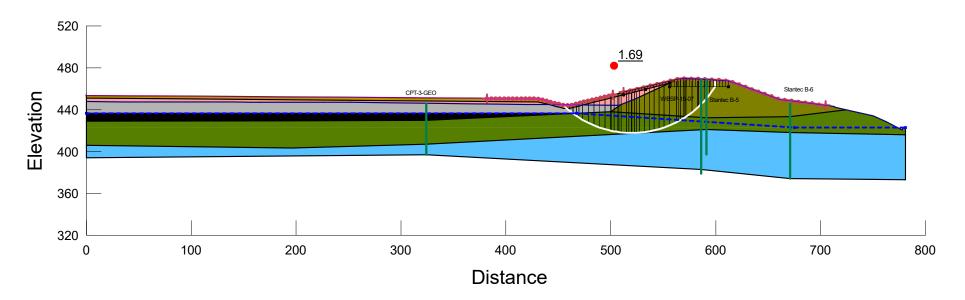

Method: Spencer

Slip Surface: Entry and Exit

FOS: 1.63

Horz Seismic Coef.: 0.045

Color	Name	Model	Unit Weight (pcf)	Cohesion (psf)	Effective Cohesion (psf)	Effective Friction Angle (°)	Piezometric Line
	Bottom Ash	Mohr-Coulomb	115		0	28	1
	CCR Fill	Mohr-Coulomb	115		0	31	1
	Cover Soil (Undrained)	Undrained (Phi=0)	125	1,000			1
	Embankment Fill (Undrained)	Undrained (Phi=0)	129	1,250			1
	Lean Clay with Sand (Undrained)	Undrained (Phi=0)	119	1,000	·		1
	Sandy Silt	Mohr-Coulomb	125		0	30	1

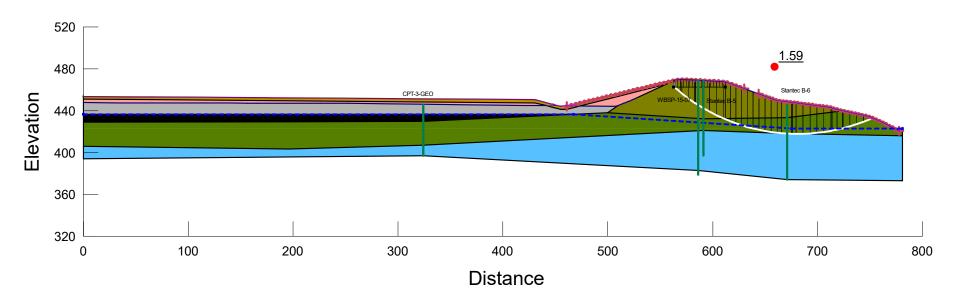

Name: Post Earthquake Pond Side

Method: Spencer

Slip Surface: Entry and Exit

FOS: 1.69

Color	Name	Model	Unit Weight (pcf)	Cohesion (psf)	Tau/Sigma Ratio	Effective Cohesion (psf)	Effective Friction Angle (°)	Piezometric Line
	Bottom Ash	Mohr-Coulomb	115			0	28	1
	Bottom Ash (Residual Strength)	SHANSEP	115		0.04			1
	CCR Fill	Mohr-Coulomb	115			0	31	1
	Cover Soil (Reduced Strength)	Undrained (Phi=0)	125	800				1
	Embankment Fill (Reduced Strength)	Undrained (Phi=0)	129	1,000				1
	Lean Clay with Sand (Reduced Strength)	Undrained (Phi=0)	119	800				1
	Sandy Silt	Mohr-Coulomb	125			0	30	1


Name: Post Earthquake Riverside

Method: Spencer

Slip Surface: Entry and Exit

FOS: 1.59

Color	Name	Model	Unit Weight (pcf)	Cohesion (psf)	Tau/Sigma Ratio	Effective Cohesion (psf)	Effective Friction Angle (°)	Piezometric Line
	Bottom Ash	Mohr-Coulomb	115			0	28	1
	Bottom Ash (Residual Strength)	SHANSEP	115		0.04			1
	CCR Fill	Mohr-Coulomb	115			0	31	1
	Cover Soil (Reduced Strength)	Undrained (Phi=0)	125	800				1
	Embankment Fill (Reduced Strength)	Undrained (Phi=0)	129	1,000				1
	Lean Clay with Sand (Reduced Strength)	Undrained (Phi=0)	119	800				1
	Sandy Silt	Mohr-Coulomb	125			0	30	1

APPENDIX G

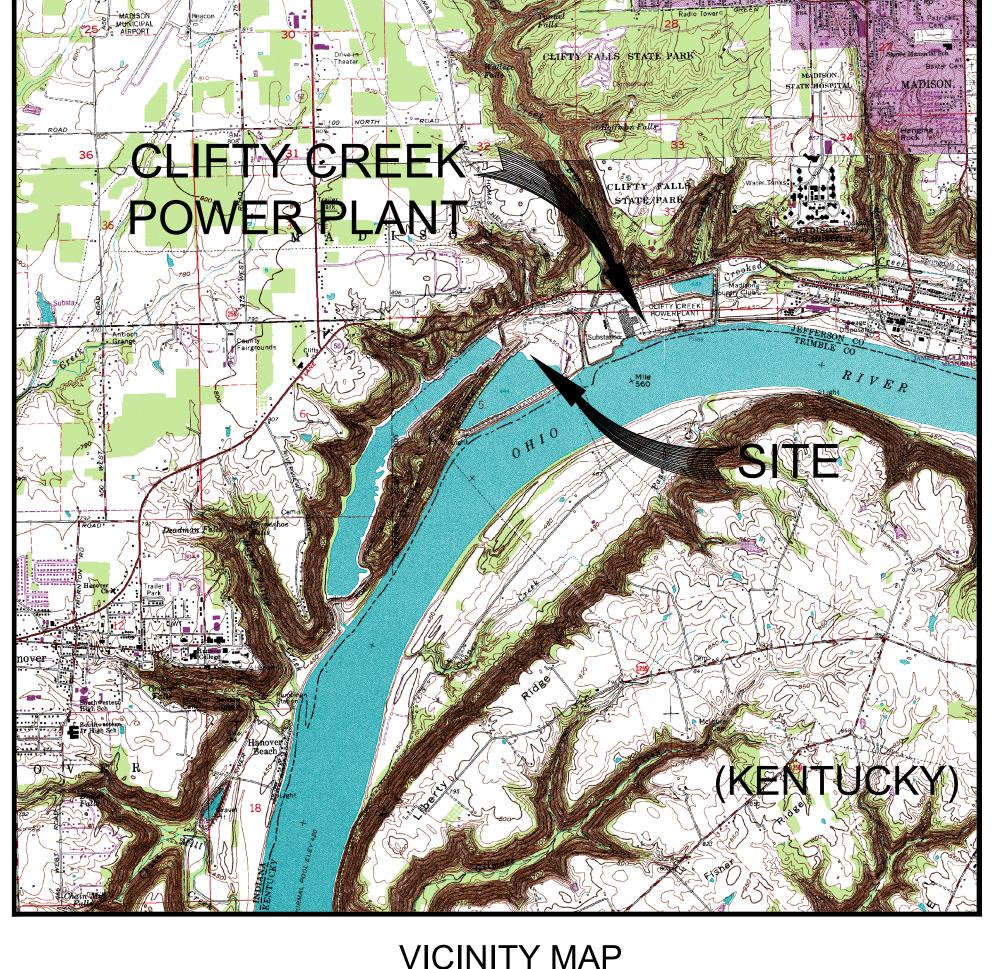
WBSP Phases 2-4 Permit Drawings

PERMIT DRAWINGS

PHASES 2 - 4 WEST BOILER SLAG POND CLOSURE & LOW VOLUME WASTE TREATMENT SYSTEM CLIFTY CREEK STATION JEFFERSON COUNTY, MADISON TOWNSHIP, INDIANA

PREPARED FOR

PIKETON, OHIO


INDEX OF SHEETS

SHEET NO.	DRAWING NO.	DESCRIPTION	REVISION
1	P-WBSP2-001-CVR	COVER SHEET	Α
2	P-WBSP2-101-OVR	OVERVIEW / SEQUENCING PLAN	Α
3	P-WBSP2-102-EC1	EXISTING CONDITIONS	Α
4	P-WBSP2-103-FG1	FINAL GRADE PLAN	Α
5	P-WBSP2-104-OP1	EXISTING AND PROPOSED OUTFALL PLANS AND PROFILE	Α
6	P-WBSP2-105-EPSC	EROSION PREVENTION AND SEDIMENT CONTROL PLAN	Α
7	P-WBSP2-106-SM1	STORMWATER MANAGEMENT PLAN	Α
8	P-WBSP2-301-PF1	PROFILES - PROJECT BASELINE	А
9	P-WBSP2-302-PF2	PROFILES - EAST, WEST STORMWATER, AND OVERFLOW DITCHES	Α
10	P-WBSP2-304-XS1	CROSS SECTIONS - PROJECT BASELINE	Α
11	P-WBSP2-305-XS2	CROSS SECTIONS - PROJECT BASELINE	Α
12	P-WBSP2-501-DT1	DETAILS	А
13	P-WBSP2-503-DT2	DETAILS	Α
14	P-WBSP2-504-DT3	DETAILS	Α
15	SB101	FOUNDATION PLAN, RECYCLE AND SETTLING TANKS	Α
16	SB102	FOUNDATION SECTION & DETAILS, RECYCLE & SETTLING TANKS	Α
17	SB103	STRUCTURAL FOUNDATIONS, BSHS PCM AND TRANSFORMERS FOUNDATION PLAN, SECTIONS AND DETAILS	А
18	SB104	STRUCTURAL FOUNDATIONS, CAUSTIC AND COAGULANT TANK PLAN AND SECTIONS	А
19	SB105	STRUCTURAL FOUNDATIONS, CHEM FEED BUILDING PLAN AND SECTION	А
20	SB109	FOUNDATION PLAN, TRENCH SETTLING TANK	Α
21	SB110	FOUNDATION PLAN, TRENCH SETTLING TANK SECTIONS AND DETAILS	А

PREPARED BY

Stantec Consulting Services Inc. 11687 Lebanon Rd. Cincinnati, Ohio 45241-2012 Tel. 513.842.8200 Fax 513.842.8250 www.stantec.com

GRAPHIC SCALE

ISSUED FOR PERMIT

Client/Project Logo

Client/Project OHIO VALLEY ELECTRIC CORPORATION INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS CLIFTY CREEK STATION

MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

COVER SHEET

Revision Sheet

Scale AS SHOWN

Drawing No. P-WBSP2-001-CVR

11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200 www.stantec.com

Copyright Reserved

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

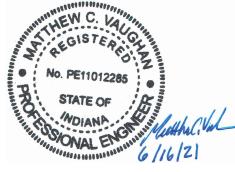
MAPPING SOURCE NOTE:

TOPOGRAPHIC, BATHYMETRIC, AND PLANIMETRIC SURVEY INFORMATION FOR THE PLANS WERE OBTAINED FROM MAPPING PROVIDED BY INDIANA-KENTUCKY ELECTRIC CORPORATION (IKEC) AND AMERICAN ELECTRIC POWER (AEP). FIELD SURVEY OF THE WEST BOILER SLAG POND HREZO ENGINEERING, INC.. FIELD SURVEY OF THE LANDFILL RUNOFF COLLECTION POND WAS PERFORMED SEPTEMBER THROUGH DECEMBER 2020 BY HREZO ENGINEERING, INC.. ACTIVE WORK AREAS NOT COVERED IN SURVEYS DATED APRIL 2018, MAY 2018, AND SEPTEMBER 2019. SOME AREAS OUTSIDE OF RECENT WORK ZONES WERE SUPPLEMENTED WITH DATA USED IN THE LANDFILL PERMIT AND CONSTRUCTION DRAWINGS (AERIAL AND FIELD SURVEYS DATED 1992, 2005, 2007, 2008) AND 2011 - 2013 INDIANA STATEWIDE LIDAR (EAST). HORIZONTAL DATUM IS NAD27 AND VERTICAL DATUM IS NAVD88. PHASE NOTES:

FOR MORE INFORMATION ON THE PHASE 1 DESIGN, SEE THE 'PHASE 1 CLOSURE WEST BOILER SLAG POND' DRAWINGS BY STANTEC, DATED 03/01/2021. FOR MORE INFORMATION ON THE PHASE 2 DESIGN, SEE THE BOILER SLAG HANDLING SYSTEM DESIGN DRAWINGS BY

BURNS AND MCDONNELL. PHASE 3 WORK CONSISTS OF CONSTRUCTION OF THE LOW VOLUME WASTEWATER TREATMENT SYSTEM AND APPURTENANCES AND FINAL CAP CONSTRUCTION. PHASE 4A WORK CONSISTS OF CLOSURE-IN-PLACE,

REGRADING, AND FINAL CAP PLACEMENT. PHASE 4B WORK CONSISTS OF CLOSURE BY REMOVAL WITHIN THE EXISTING POND FOOTPRINT AND REGRADING FOR STORMWATER RUNOFF.


ELECTRIC TOWER ELECTRIC PULLBOX TREE/SHRUB

<u>LEGEND</u>

ELECTRIC POLE POWER POLE STORM CATCH BASIN OVERHEAD ELECTRIC ---- UGE---- UNDERGROUND ELECTRIC ——×—— FENCE

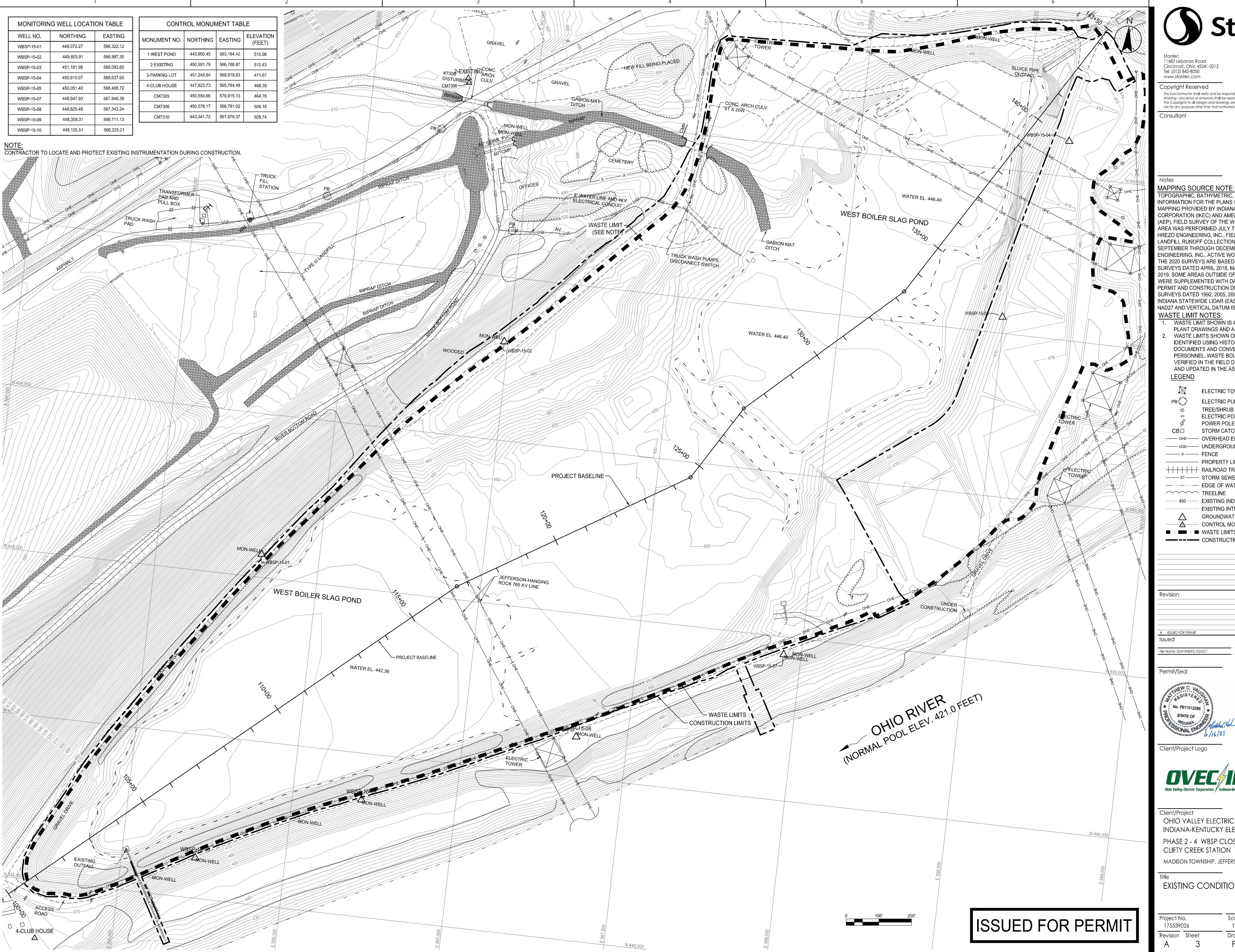
------ PROPERTY LINE ----- STORM SEWER —···— EDGE OF WATER TREELINE

—— 450 —— EXISTING INDEX CONTOUR **EXISTING INTERMEDIATE CONTOUR**

Client/Project Logo

Client/Project OHIO VALLEY ELECTRIC CORPORATION

INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS CLIFTY CREEK STATION


MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

OVERVIEW / SEQUENCING PLAN

Scale Revision Sheet

1''=200'

Drawing No.
P-WBSP2-101-OVR

11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200

Copyright Reserved

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.


MAPPING SOURCE NOTE: OPOGRAPHIC, BATHYMETRIC, AND PLANIMETRIC SURVEY NFORMATION FOR THE PLANS WERE OBTAINED FROM /IAPPING PROVIDED BY INDIANA-KENTUCKY ELECTRIC THE 2020 SURVEYS ARE BASED ON AERIAL AND FIELD 2019. SOME AREAS OUTSIDE OF RECENT WORK ZONES PERMIT AND CONSTRUCTION DRAWINGS (AERIAL AND FIELD SURVEYS DATED 1992, 2005, 2007, 2008) AND 2011 - 2013 INDIANA STATEWIDE LIDAR (EAST). HORIZONTAL DATUM IS NAD27 AND VERTICAL DATUM IS NAVD88. **WASTE LIMIT NOTES:**

> WASTE LIMIT SHOWN IS APPROXIMATED FROM HISTORIC PLANT DRAWINGS AND A LIMITED NUMBER OF TEST PITS. WASTE LIMITS SHOWN ON THESE PLANS HAVE BEEN IDENTIFIED USING HISTORICAL OPERATIONAL DOCUMENTS AND CONVERSATIONS WITH IKEC/OVEC PERSONNEL. WASTE BOUNDARY LOCATION WILL BE VERIFIED IN THE FIELD DURING CLOSURE ACTIVITIES AND UPDATED IN THE AS-BUILT DOCUMENTATION.

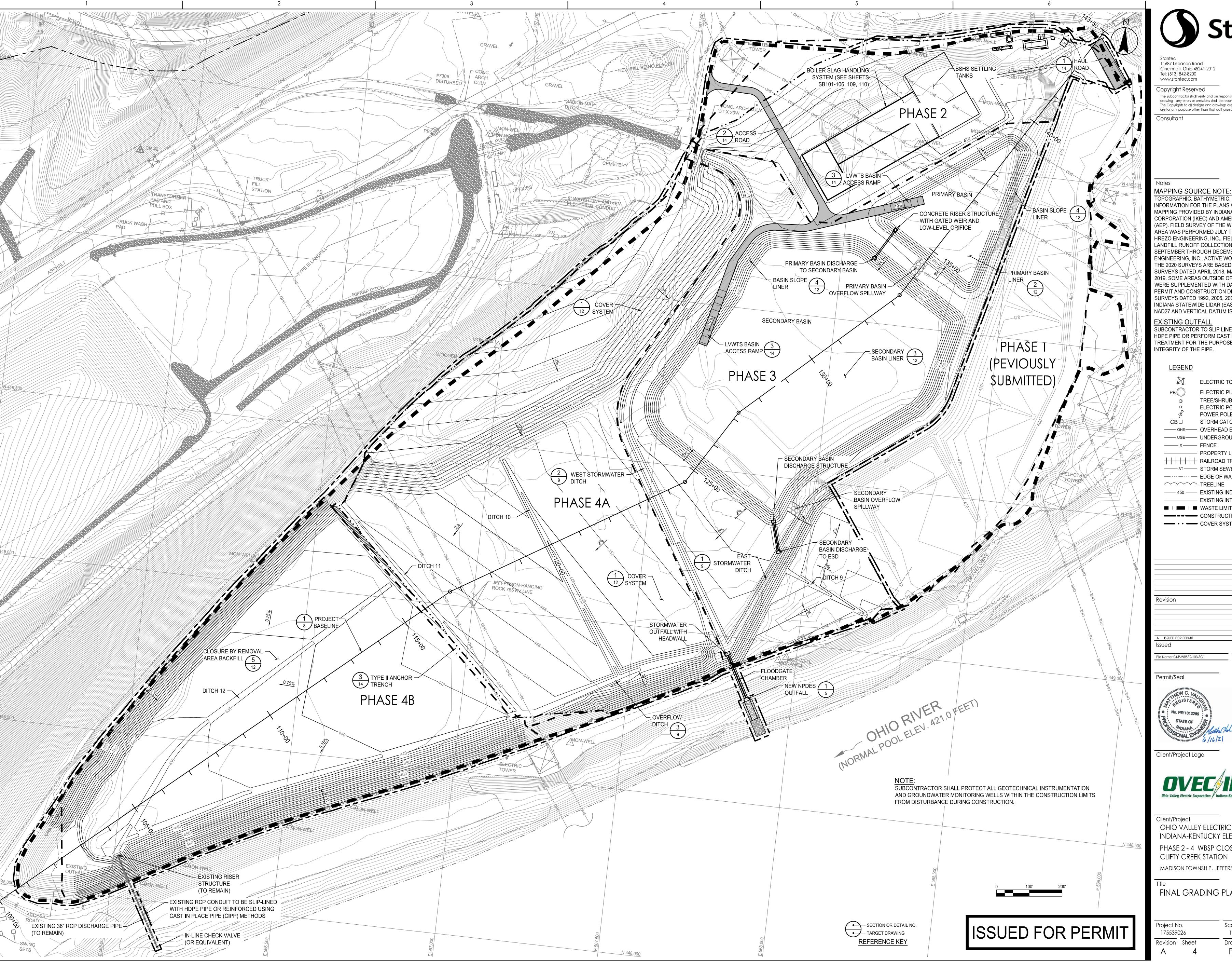
ELECTRIC PULLBOX TREE/SHRUB ELECTRIC POLE POWER POLE STORM CATCH BASIN ----- OVERHEAD ELECTRIC ---- UGE---- UNDERGROUND ELECTRIC ++++++ RAILROAD TRACKS ——st—— STORM SEWER —···−··· — EDGE OF WATER TREELINE - 450 — EXISTING INDEX CONTOUR

ELECTRIC TOWER

———— CONSTRUCTION LIMITS

Client/Project Logo

Client/Project OHIO VALLEY ELECTRIC CORPORATION INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS


MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

EXISTING CONDITIONS

Project No. Scale 175539026 Revision Sheet

1"=100'

Drawing No.
P-WBSP2-102-EC1

11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200

Copyright Reserved

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

MAPPING SOURCE NOTE

SURVEYS DATED 1992, 2005, 2007, 2008) AND 2011 - 2013 INDIANA STATEWIDE LIDAR (EAST). HORIZONTAL DATUM IS NAD27 AND VERTICAL DATUM IS NAVD88.

EXISTING OUTFALL

SUBCONTRACTOR TO SLIP LINE EXISTING RCP CONDUIT WITH HDPE PIPE OR PERFORM CAST IN PLACE PIPE (CIPP) TREATMENT FOR THE PURPOSE OF IMPROVING STRUCTURAL INTEGRITY OF THE PIPE.

ELECTRIC TOWER ELECTRIC POLE

STORM CATCH BASIN ---- OHE---- OVERHEAD ELECTRIC ---- UGE---- UNDERGROUND ELECTRI

POWER POLE

——×—— FENCE ++++++ RAILROAD TRACKS ----- STORM SEWER

—···— EDGE OF WATER TREELINE — 450 —— EXISTING INDEX CONTOUR

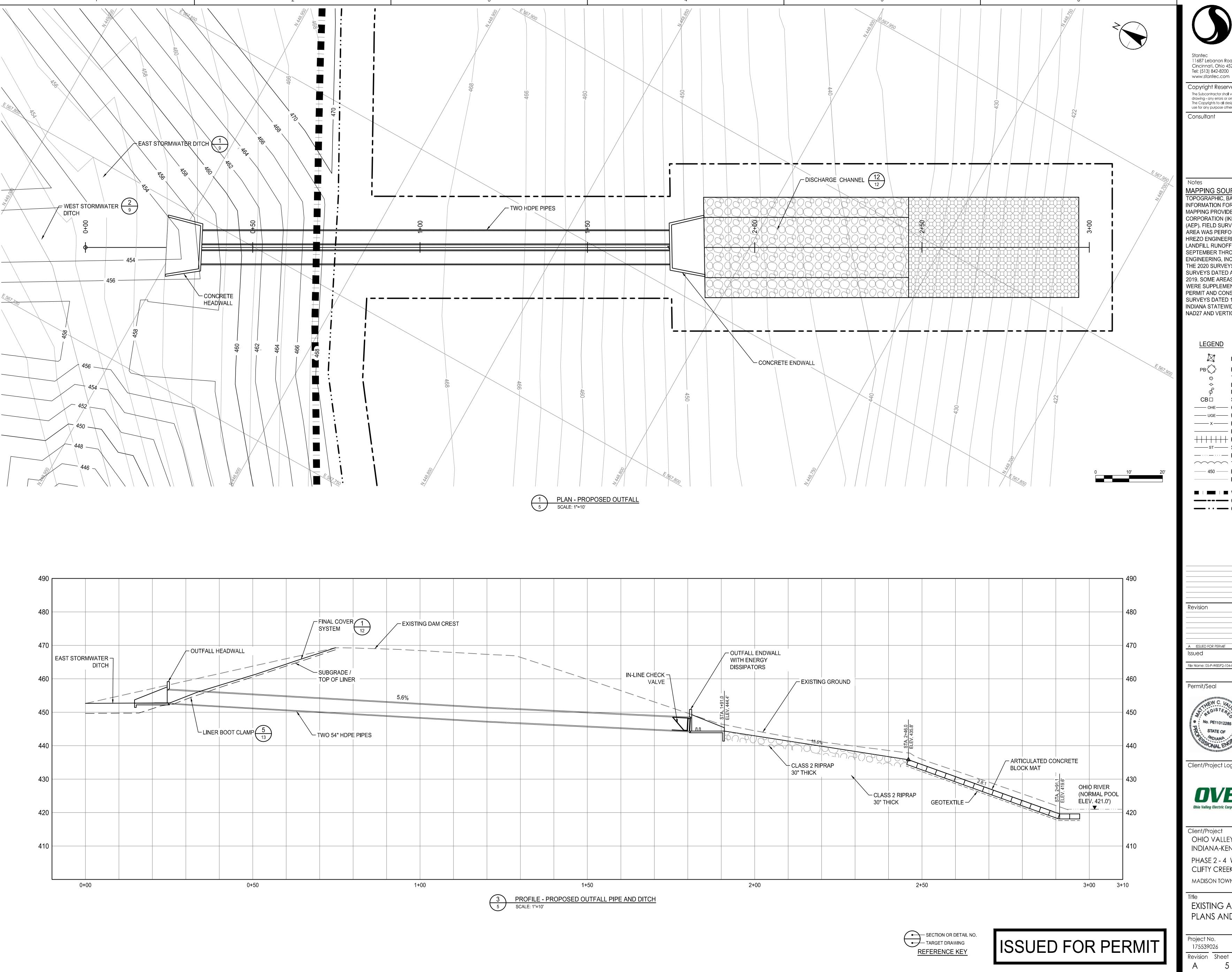
EXISTING INTERMEDIATE CONTOUR ——— CONSTRUCTION LIMITS

--- COVER SYSTEM LIMITS

Client/Project Logo

Client/Project

OHIO VALLEY ELECTRIC CORPORATION INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS


MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

FINAL GRADING PLAN

Project No. 175539026

Scale 1"=100'

Drawing No.
P-WBSP2-103-FG1

11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200

Copyright Reserved

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

MAPPING SOURCE NOTE: TOPOGRAPHIC, BATHYMETRIC, AND PLANIMETRIC SURVEY INFORMATION FOR THE PLANS WERE OBTAINED FROM MAPPING PROVIDED BY INDIANA-KENTUCKY ELECTRIC CORPORATION (IKEC) AND AMERICAN ELECTRIC POWER (AEP). FIELD SURVEY OF THE WEST BOILER SLAG POND AREA WAS PERFORMED JULY THROUGH OCTOBER 2020 BY HREZO ENGINEERING, INC.. FIELD SURVEY OF THE LANDFILL RUNOFF COLLECTION POND WAS PERFORMED SEPTEMBER THROUGH DECEMBER 2020 BY HREZO ENGINEERING, INC.. ACTIVE WORK AREAS NOT COVERED IN THE 2020 SURVEYS ARE BASED ON AERIAL AND FIELD SURVEYS DATED APRIL 2018, MAY 2018, AND SEPTEMBER 2019. SOME AREAS OUTSIDE OF RECENT WORK ZONES WERE SUPPLEMENTED WITH DATA USED IN THE LANDFILL PERMIT AND CONSTRUCTION DRAWINGS (AERIAL AND FIELD SURVEYS DATED 1992, 2005, 2007, 2008) AND 2011 - 2013 INDIANA STATEWIDE LIDAR (EAST). HORIZONTAL DATUM IS NAD27 AND VERTICAL DATUM IS NAVD88.

<u>LEGEND</u>

ELECTRIC TOWER ELECTRIC PULLBOX TREE/SHRUB **ELECTRIC POLE** POWER POLE STORM CATCH BASIN ----- OVERHEAD ELECTRIC

---- UGE---- UNDERGROUND ELECTRIC ——×—— FENCE ----- PROPERTY LINE

++++++ RAILROAD TRACKS ——st—— STORM SEWER —···— EDGE OF WATER TREELINE

—— 450 —— EXISTING INDEX CONTOUR EXISTING INTERMEDIATE CONTOUR

■ | ■■ | ■ WASTE LIMITS

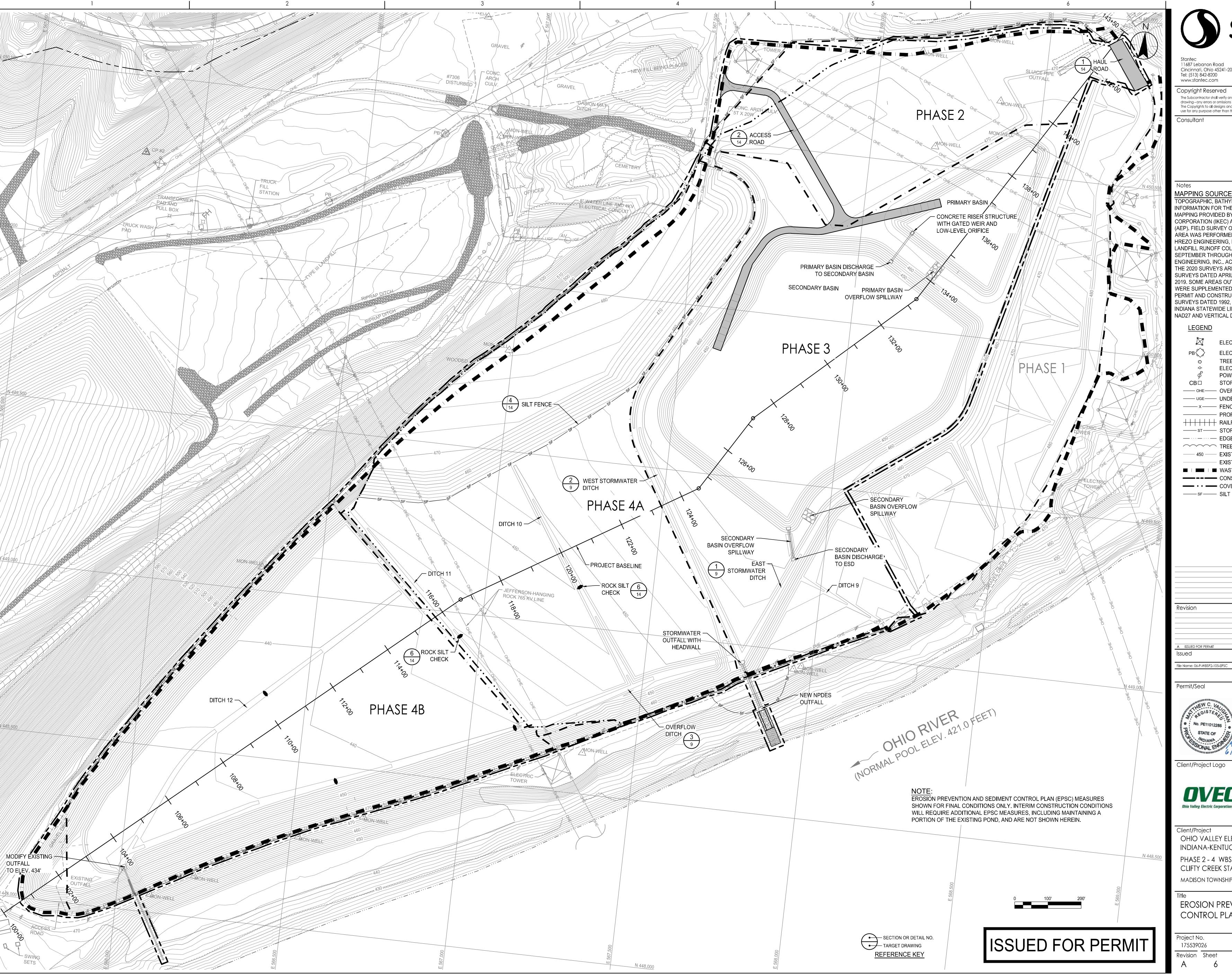
——— CONSTRUCTION LIMITS — · · — COVER SYSTEM LIMITS

File Name: 05-P-WBSP2-104-OP1

Client/Project Logo

Client/Project

OHIO VALLEY ELECTRIC CORPORATION INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS CLIFTY CREEK STATION


MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

EXISTING AND PROPOSED OUTFALL PLANS AND PROFILE

Revision Sheet

Scale 1''=100'

Drawing No.
P-WBSP2-104-OP1

Stantec 11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

MAPPING SOURCE NOTE: INDIANA STATEWIDE LIDAR (EAST). HORIZONTAL DATUM IS NAD27 AND VERTICAL DATUM IS NAVD88.

ELECTRIC TOWER ELECTRIC PULLBOX TREE/SHRUB ELECTRIC POLE POWER POLE STORM CATCH BASIN ---- OHE---- OVERHEAD ELECTRIC ----- UGE------ UNDERGROUND ELECTRIC

PROPERTY LINE +++++++ RAILROAD TRACKS

----- STORM SEWER —···— EDGE OF WATER TREELINE —— 450 —— EXISTING INDEX CONTOUR

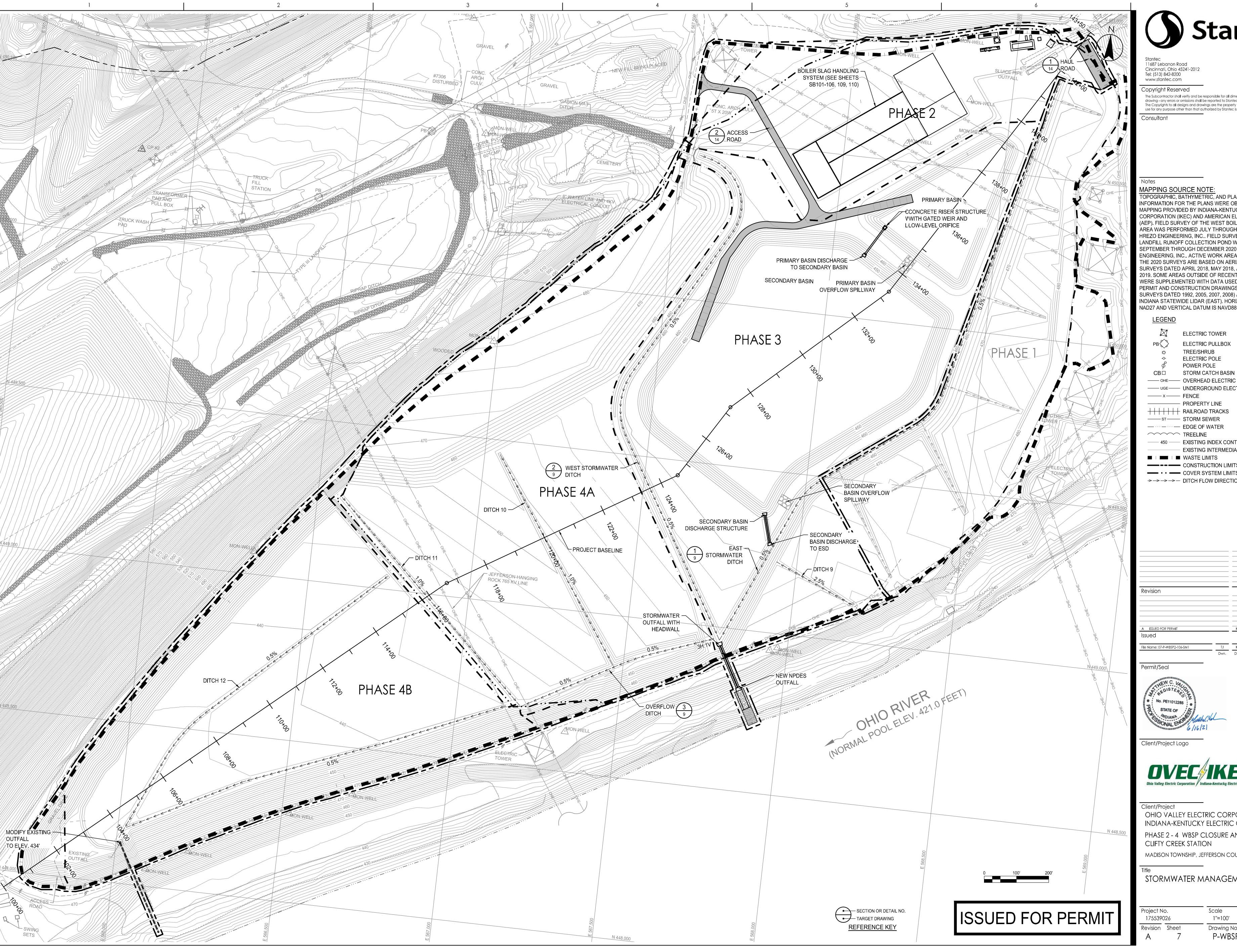
EXISTING INTERMEDIATE CONTOUR ■ | ■■ | ■ WASTE LIMITS ———— CONSTRUCTION LIMITS

— · · — COVER SYSTEM LIMITS

Client/Project Logo

Client/Project OHIO VALLEY ELECTRIC CORPORATION

INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS CLIFTY CREEK STATION


MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

EROSION PREVENTION AND SEDIMENT CONTROL PLAN

175539026

Scale 1''=100'

Drawing No.
P-WBSP2-105-EPSC

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

MAPPING SOURCE NOTE: INDIANA STATEWIDE LIDAR (EAST). HORIZONTAL DATUM IS NAD27 AND VERTICAL DATUM IS NAVD88.

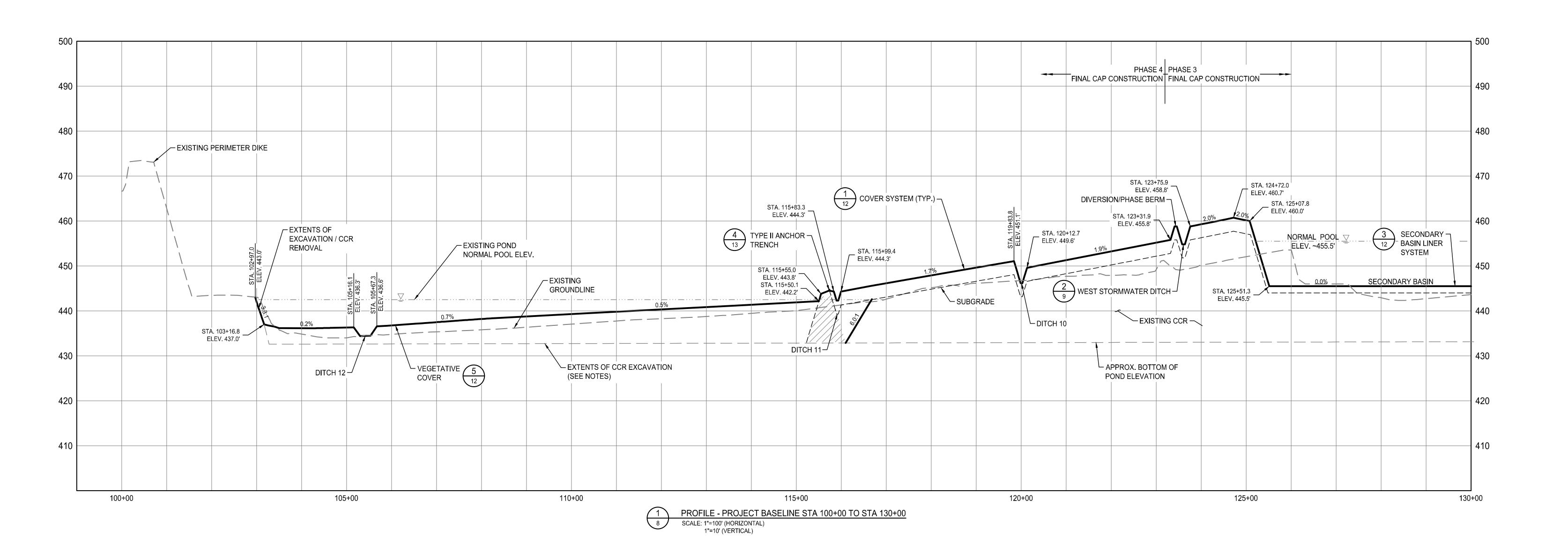
ELECTRIC TOWER ELECTRIC PULLBOX TREE/SHRUB ELECTRIC POLE POWER POLE STORM CATCH BASIN

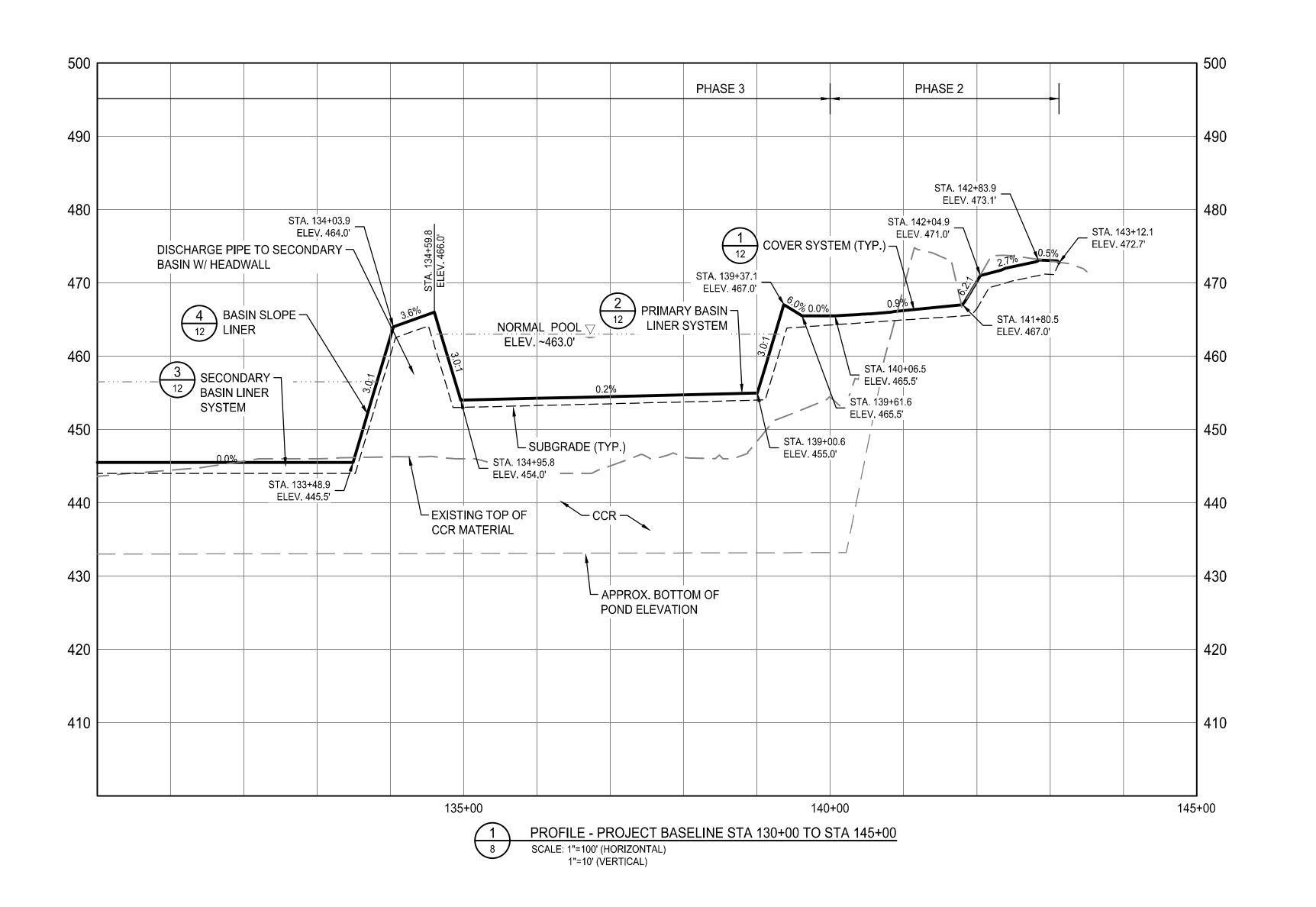
---- UGE---- UNDERGROUND ELECTRIC

----- STORM SEWER —···— EDGE OF WATER

—— 450 —— EXISTING INDEX CONTOUR **EXISTING INTERMEDIATE CONTOUR**

———— CONSTRUCTION LIMITS — · · — COVER SYSTEM LIMITS $\rightarrow \rightarrow \rightarrow \rightarrow$ DITCH FLOW DIRECTION


OHIO VALLEY ELECTRIC CORPORATION INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS


MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

STORMWATER MANAGEMENT PLAN

Scale 1"=100'

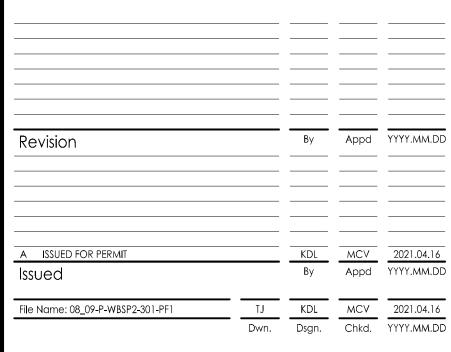
Drawing No.
P-WBSP2-106-SM1

section or detail no.

TARGET DRAWING

REFERENCE KEY

ISSUED FOR PERMIT


Stantec 11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200 www.stantec.com

Copyright Reserved

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Votes

1. BOTTOM SURFACE ELEVATION IS BASED ON HISTORIC DRAWING NUMBER 16-3002A-3. AFTER ALL VISIBLE CCR IS REMOVED, AN ADDITIONAL 6 INCHES OF SOIL WILL BE EXCAVATED.

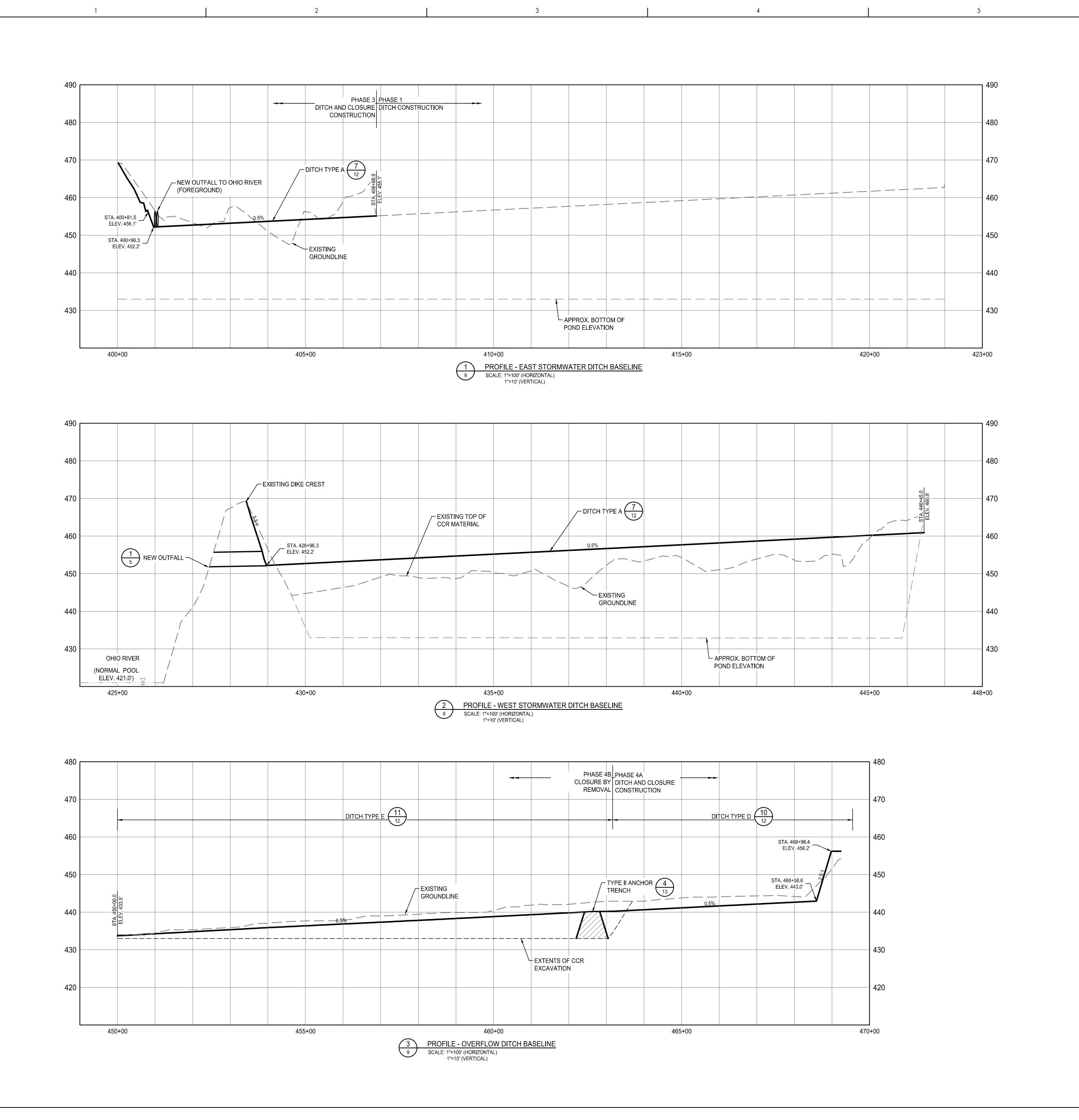
Permit/Sea

Client/Project Logo

Client/Project
OHIO VALLEY ELECTRIC CORPORATION
INDIANA-KENTUCKY ELECTRIC CORPORATION
PHASE 2 - 4 WBSP CLOSURE AND LVWTS
CLIFTY CREEK STATION

MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

PROFILES - PROJECT BASELINE


Project No. 175539026

Scale
AS SHOWN

Drawing No.
P-WSBP2-301-PF1

Revision Sheet Drawing P-WS

:021/04/16 4:27 PM Login: Johnson, Tracy

Stantec 11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200 www.stantec.com

Copyright Reserved

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Votes

 Revision
 By
 Appd
 YYYY.MM.DD

 A ISSUED FOR PERMIT
 KDL
 MCV
 2021.04.16

 Issued
 By
 Appd
 YYYY.MM.DD

 File Name: 08_09-P-WBSP2-301-PF1
 TJ
 KDL
 MCV
 2021.04.16

 Dwn.
 Dsgn.
 Chkd.
 YYYY.MM.DD

No. PE11012285

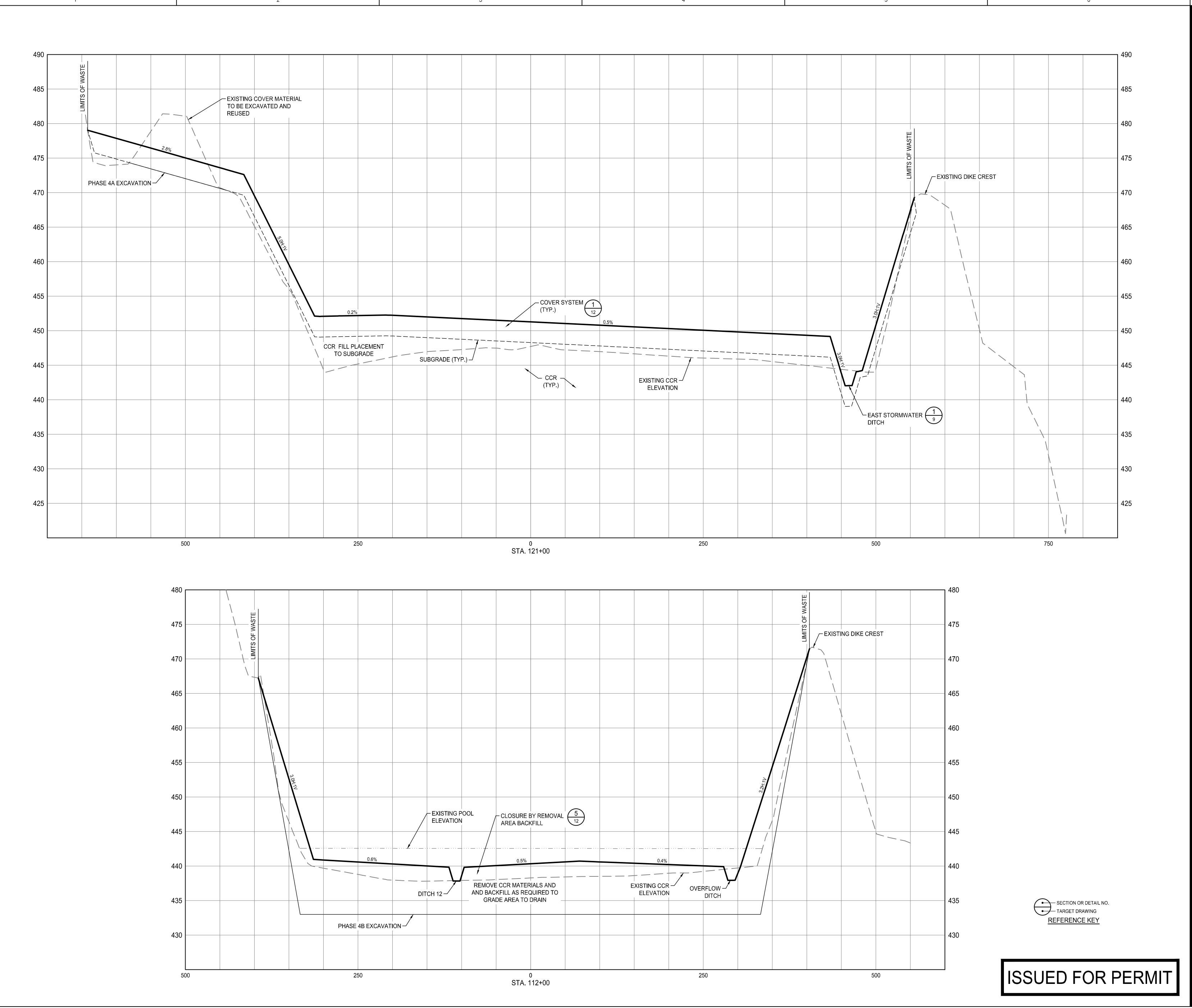
Client/Project Logo

Client/Project
OHIO VALLEY ELECTRIC CORPORATION
INDIANA-KENTUCKY ELECTRIC CORPORATION
PHASE 2 - 4 WBSP CLOSURE AND LVWTS
CLIFTY CREEK STATION

MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

PROFILE - EAST, WEST STORWATER, AND OVERFLOW DITCHES

ICCLIED		DEDIVI:	-
ISSUEL	TUR	PERMI	


SECTION OR DETAIL NO.

TARGET DRAWING

REFERENCE KEY

Project No.	Scale
175539026	as shown
Revision Sheet	Drawing No.

Drawing No.
P-WSBP2-302-PF2

Stantec 11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200 www.stantec.com

Copyright Reserved

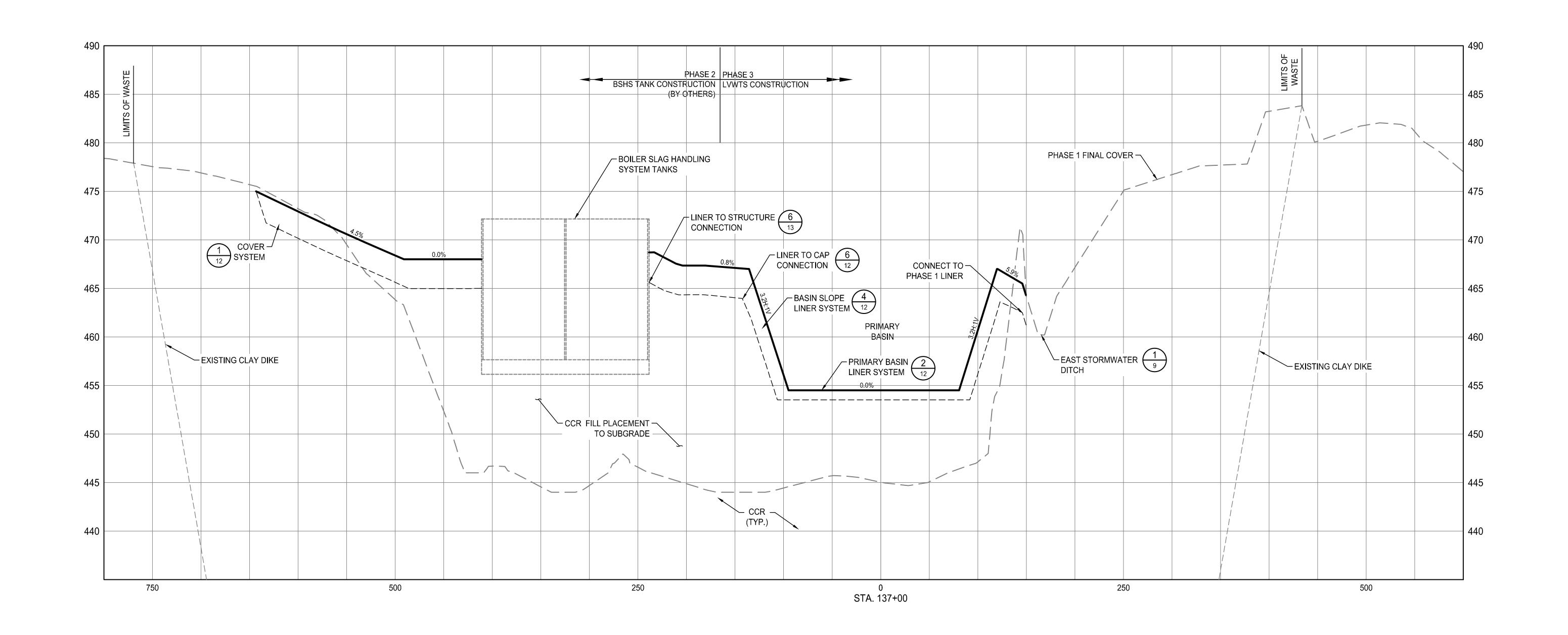
The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

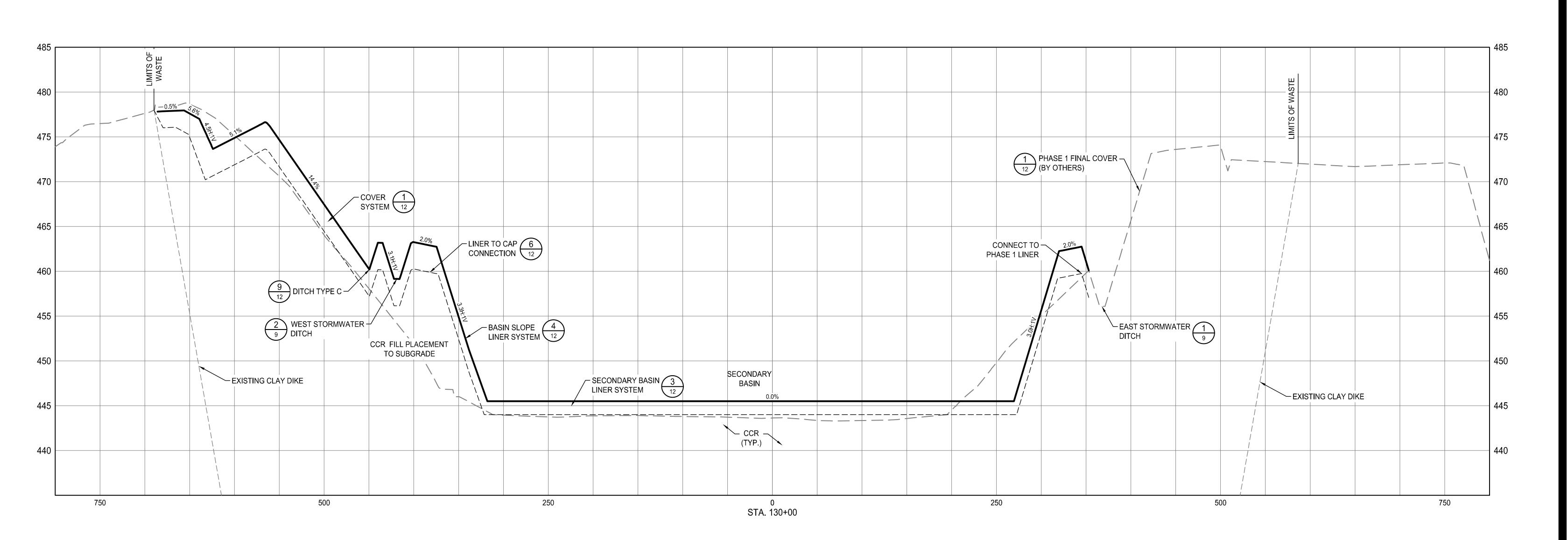
Notes

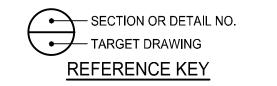
File Name: 10_11-P-WBSP2-304-XS1

Client/Project Logo

Client/Project OHIO VALLEY ELECTRIC CORPORATION INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS CLIFTY CREEK STATION


MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA


CROSS SECTIONS - PROJECT BASELINE


Project No. 175539026 Revision Sheet

Scale as shown

Drawing No.
P-WSBP2-304-XS1

ISSUED FOR PERMIT

Stantec 11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200

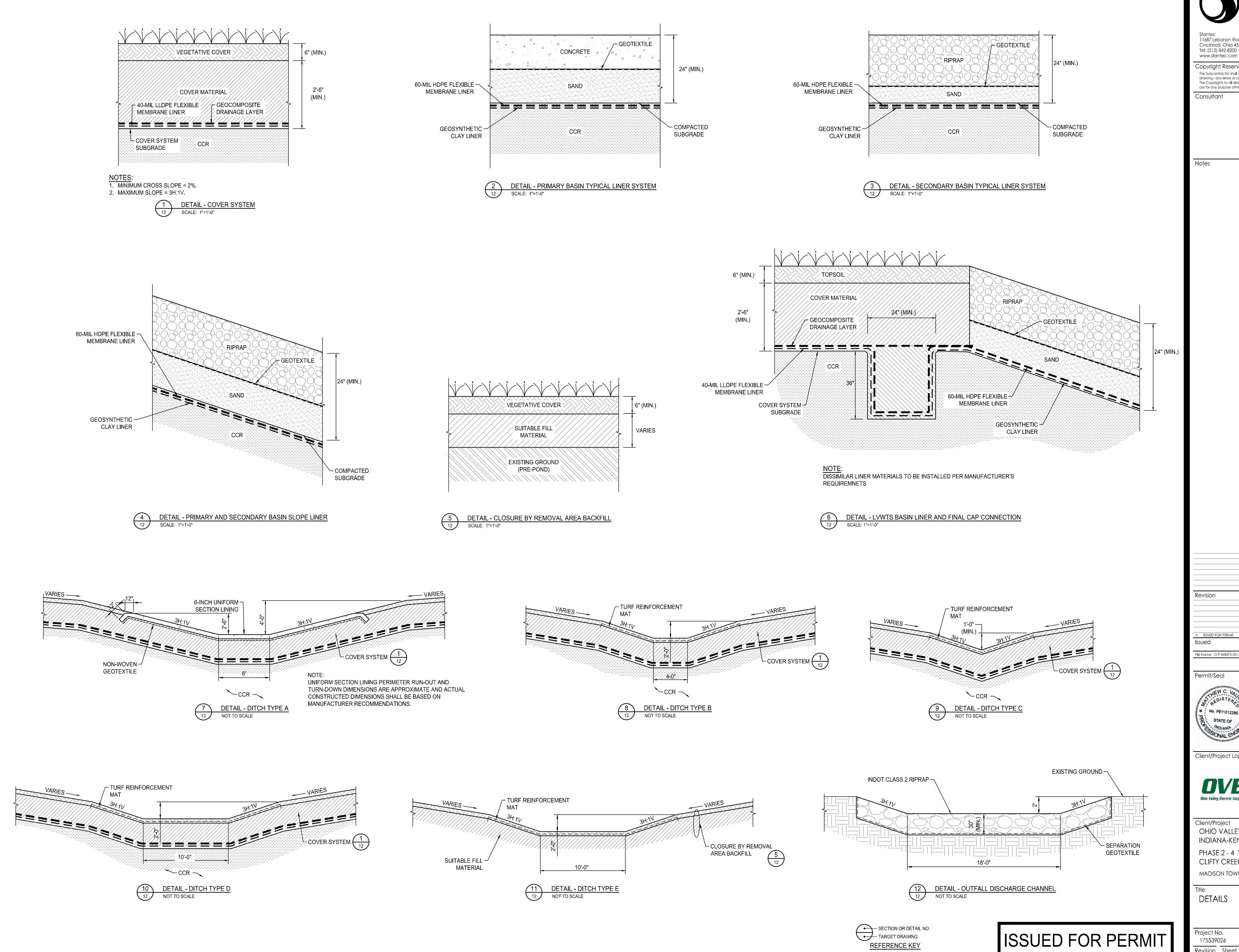
www.stantec.com

Copyright Reserved The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

File Name: 10_11-P-WBSP2-304-XS1

Client/Project Logo

Client/Project OHIO VALLEY ELECTRIC CORPORATION INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS CLIFTY CREEK STATION


MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

CROSS SECTIONS - PROJECT BASELINE

Project No. 175539026 Revision Sheet

Scale as shown

Drawing No.
P-WSBP2-305-XS2

11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200

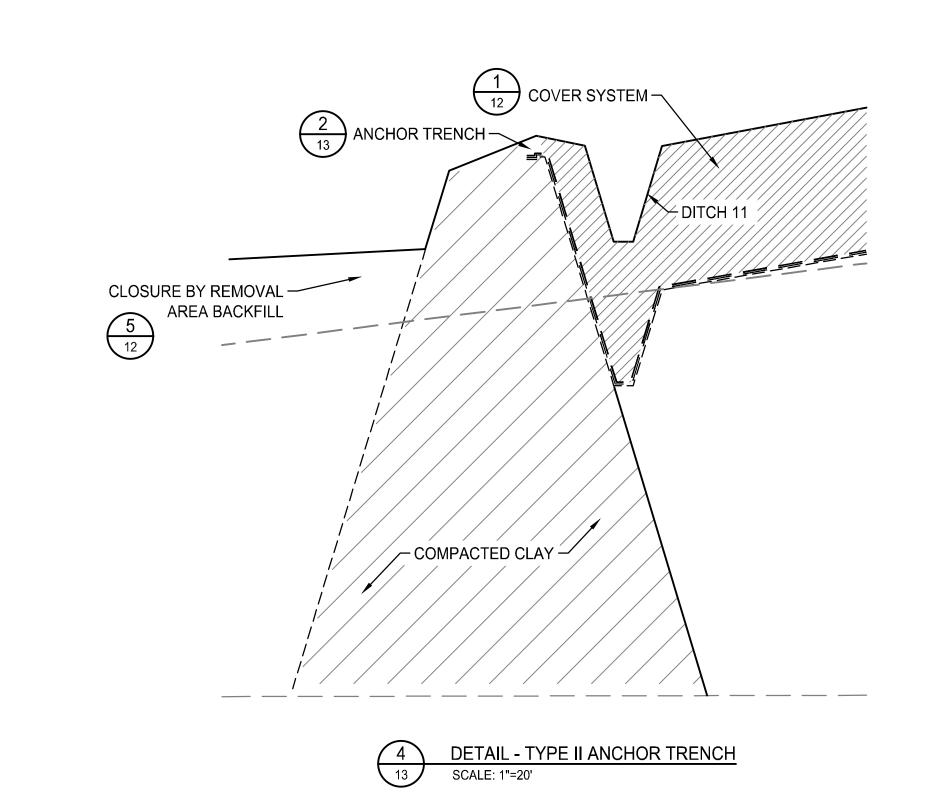
Copyright Reserved

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden. Consultant

Issued File Name: 12-P-WBSP2-501-DT1

Client/Project Logo

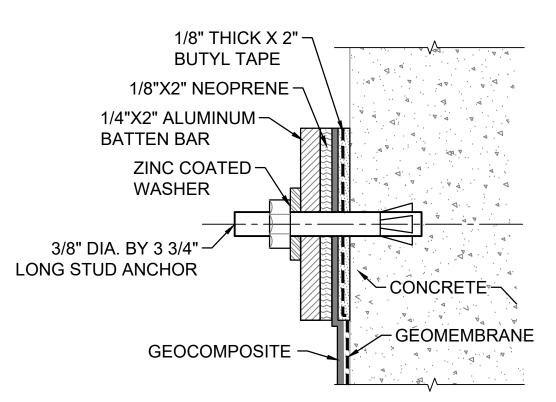

Client/Project OHIO VALLEY ELECTRIC CORPORATION INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS CLIFTY CREEK STATION


MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

DETAILS

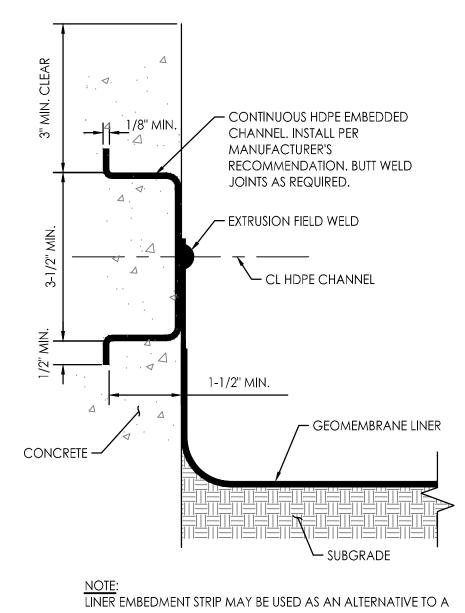
Project No. 175539026 Revision Sheet Scale as shown

Drawing No.
P-WBSP2-501-DT1

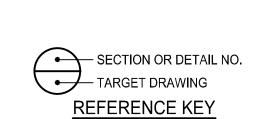

BATTEN LINER TO FACE OF \neg

STRUCTURE EACH SIDE

DETAIL - LINER BOOT/CLAMP ASSEMBLY


CQA MANAGER, TO PROVIDE PROTECTION FOR THE INSTALLED LINER SYSTEM.

1. ANCHORS SHALL BE INSTALLED ON SIX INCH CENTERS ALONG THE BATTEN BAR.


2. ANCHORS SHALL FEATURE A BOLT BODY AND EXPANDER PLUG.

BATTEN BAR ANCHOR.

_BATTEN BAR 6

13

ANCHOR

OF LINER SYSTEM AND LVWTS STRUCTURES.

DRAWINGS BY BURNS AND MCDONNELL

1. BATTEN BAR AND ANCHORS TO BE USED AT INTERSECTION

2. FOR BATTEN BAR AND ANCHOR ATTACHMENTS BETWEEN

LINER SYSTEM AND BSHS TANKS, SEE CONTRACT 5.8220

DETAIL - BATTEN BAR ATTACHMENT

ISSUED FOR PERMIT

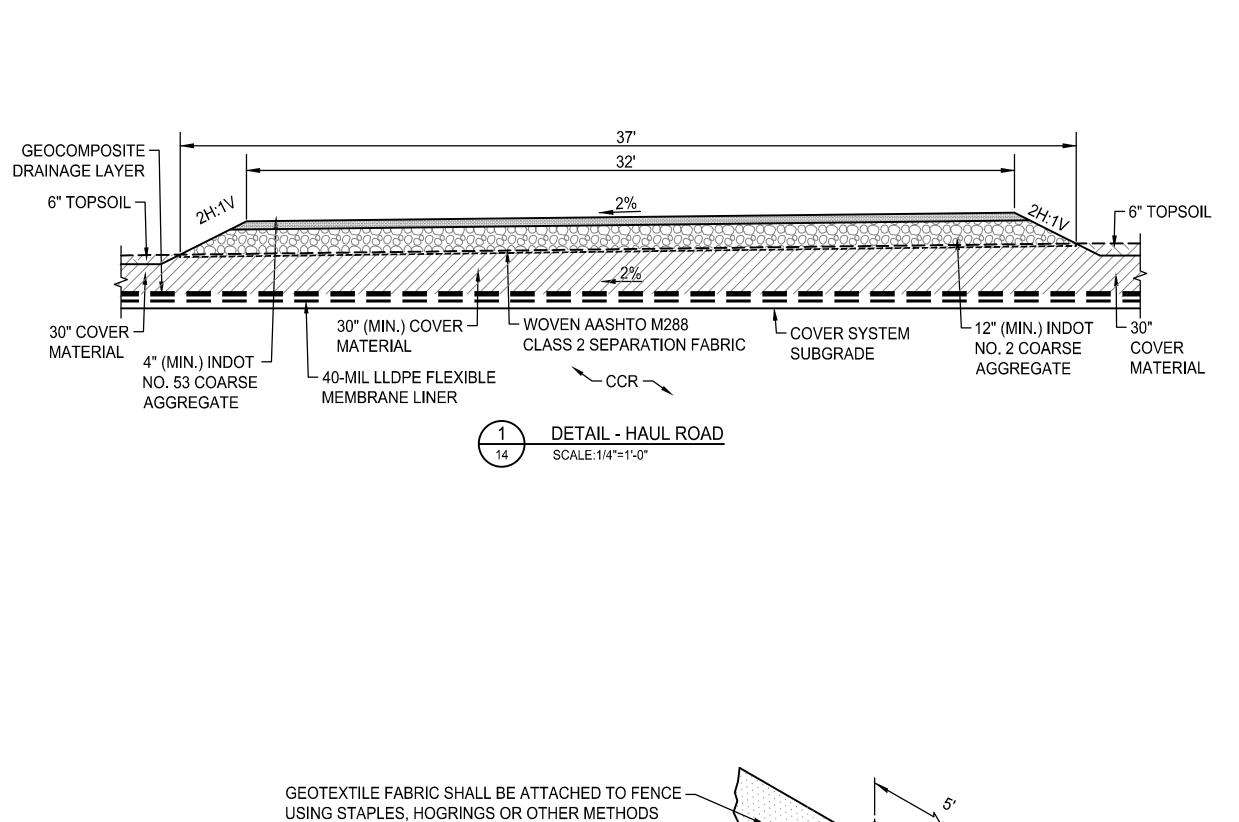
11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200 www.stantec.com

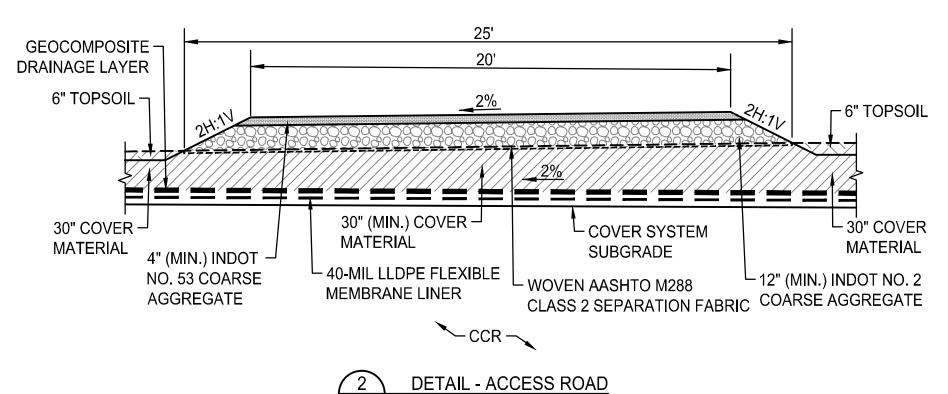
Copyright Reserved

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

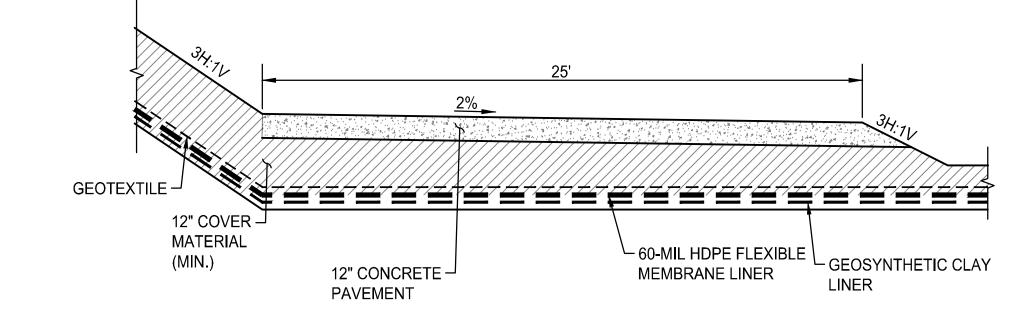
File Name: 13-P-WBSP2-503-DT2 Permit/Seal

Client/Project Logo

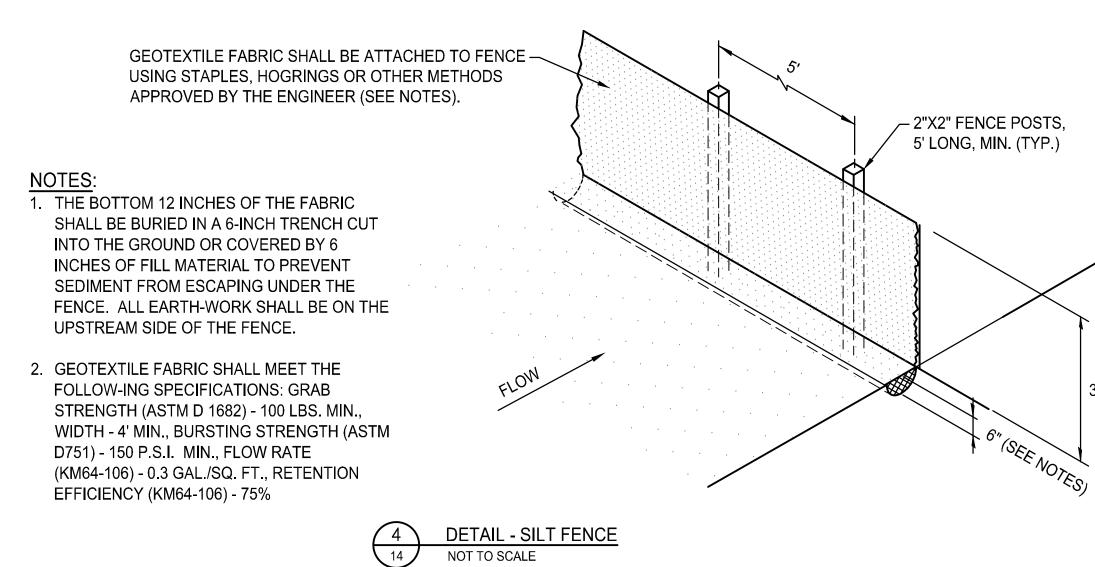


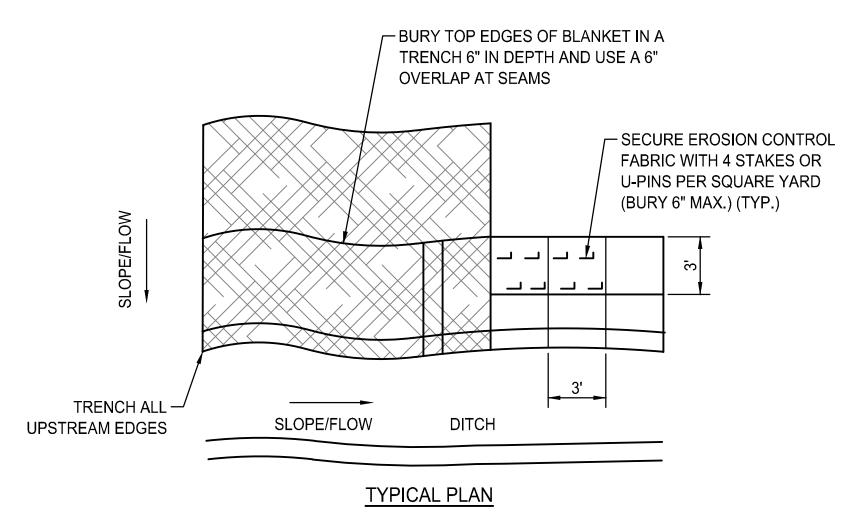

Client/Project OHIO VALLEY ELECTRIC CORPORATION INDIANA-KENTUCKY ELECTRIC CORPORATION PHASE 2 - 4 WBSP CLOSURE AND LVWTS CLIFTY CREEK STATION MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

DETAILS


Project No. Scale as shown Revision Sheet

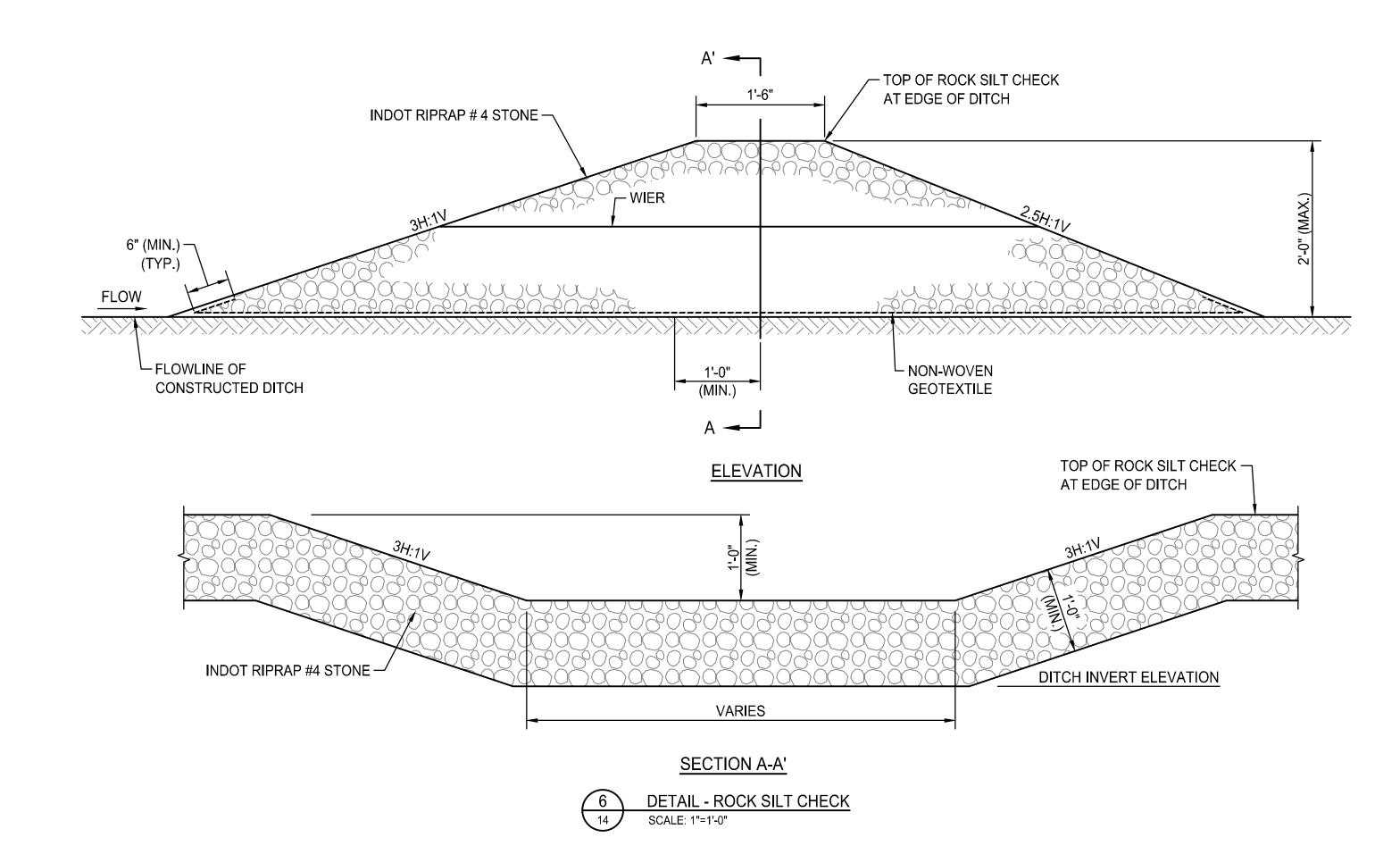
Drawing No.
P-WBSP2-503-DT3




SCALE:1/4"=1'-0"

DETAIL - LVWTS BASIN ACCESS RAMP

SCALE:1/4"=1'-0"


NOTES:

1. PLACE SEED PRIOR TO INSTALLING EROSION CONTROL BLANKETS.

2. FOR USE AS TEMPORARY EROSION PROTECTION ON SLOPES AND VEGETATED DITCHES UNTIL PERMANENT VEGETATION, SOD, OR TURF REINFORCEMENT MAT IS INSTALLED AND VEGETATION IS ESTABLISHED.

5 DETAIL - EROSION CONTROL BLANKET

14 NOT TO SCALE

SECTION OR DETAIL NO.

TARGET DRAWING

REFERENCE KEY

ISSUED FOR PERMIT

Stantec 11687 Lebanon Road Cincinnati, Ohio 45241-2012 Tel: (513) 842-8200 www.stantec.com

Copyright Reserved

The Subcontractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Consultant

. . .

Permit/Seal

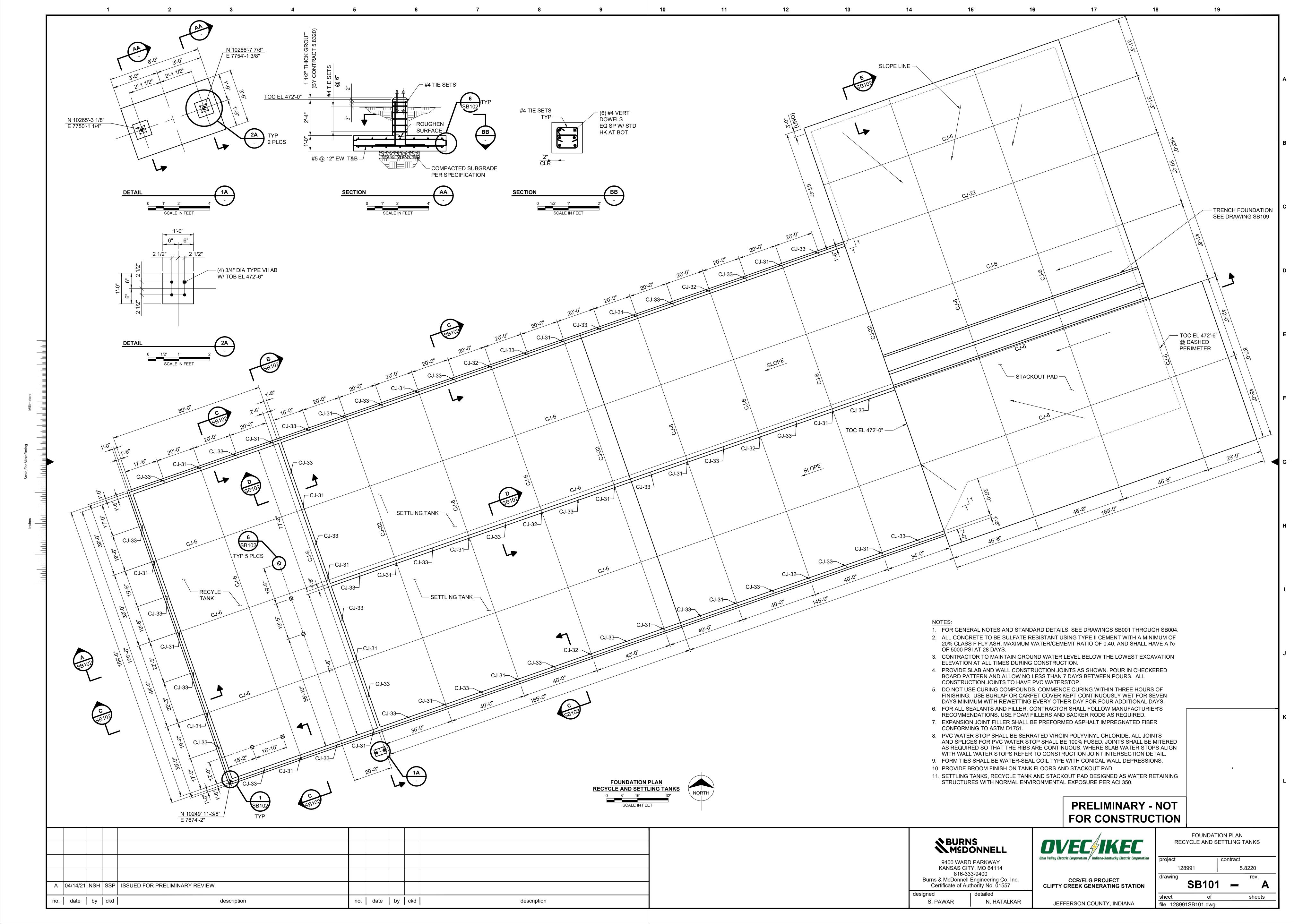
Client/Project Logo

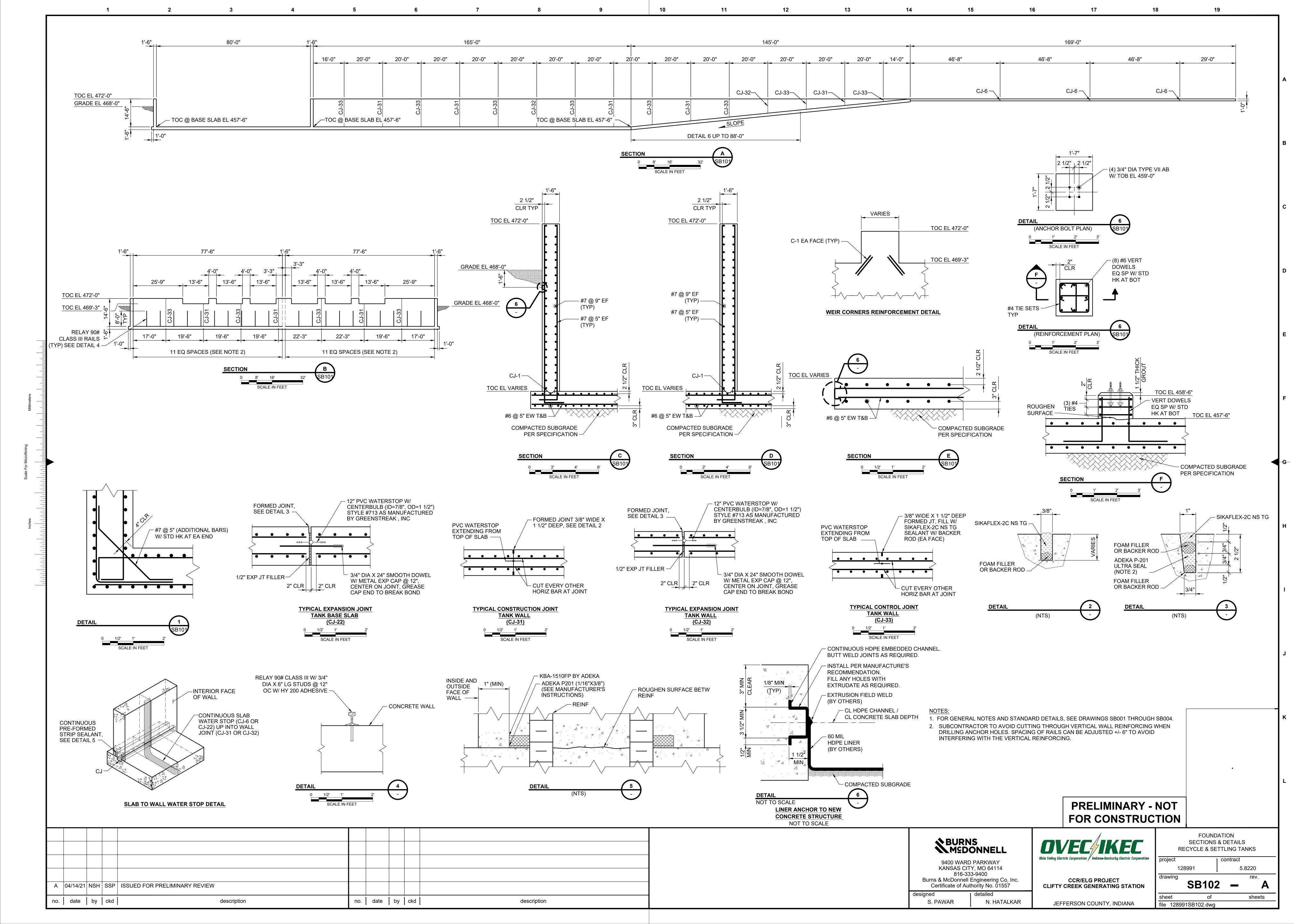
Client/Project
OHIO VALLEY ELECTRIC CORPORATION
INDIANA-KENTUCKY ELECTRIC CORPORATION
PHASE 2 - 4 WBSP CLOSURE AND LVWTS
CLIFTY CREEK STATION
MADISON TOWNSHIP, JEFFERSON COUNTY, INDIANA

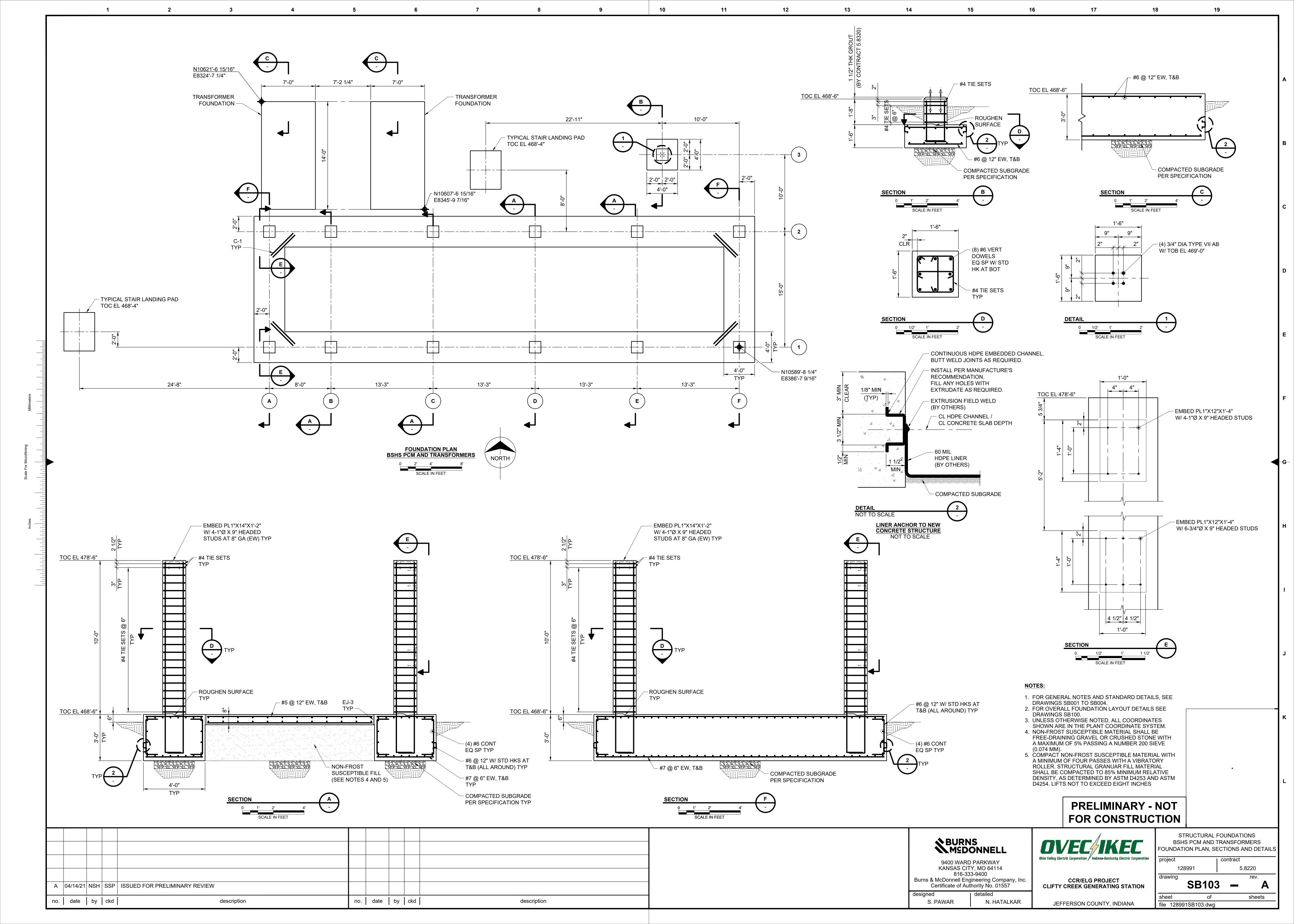
Title DETAILS

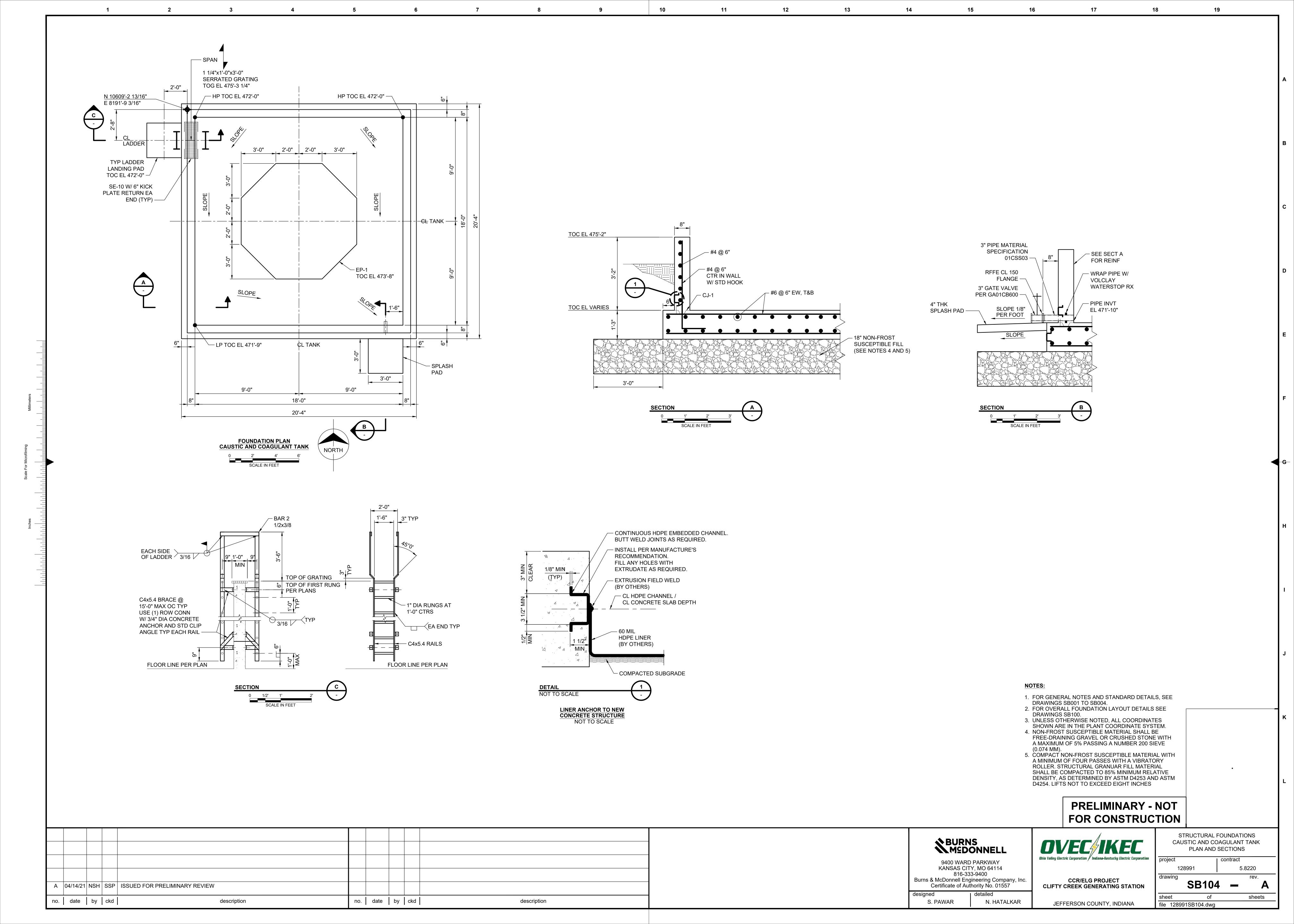
Project No.

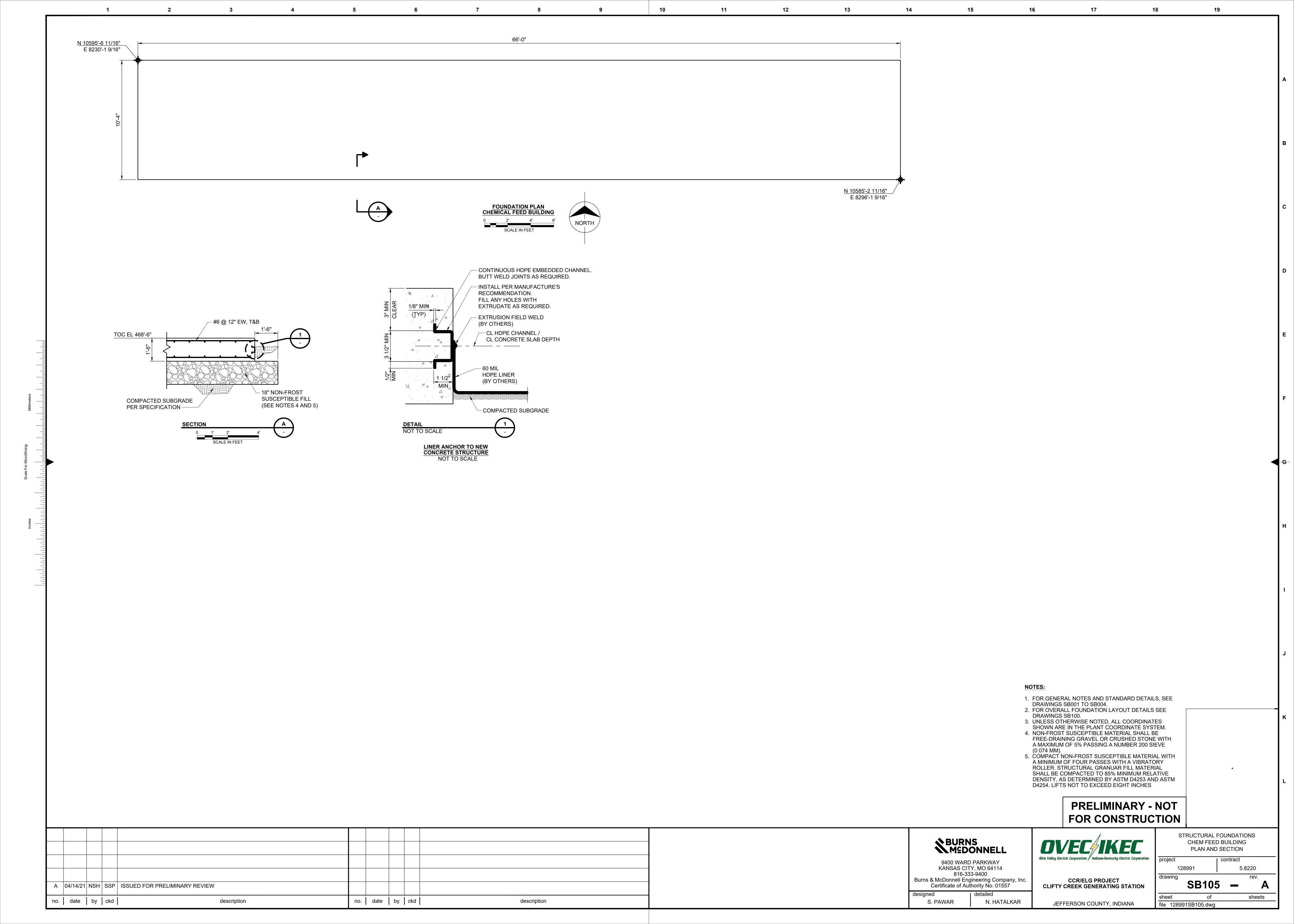
175539026

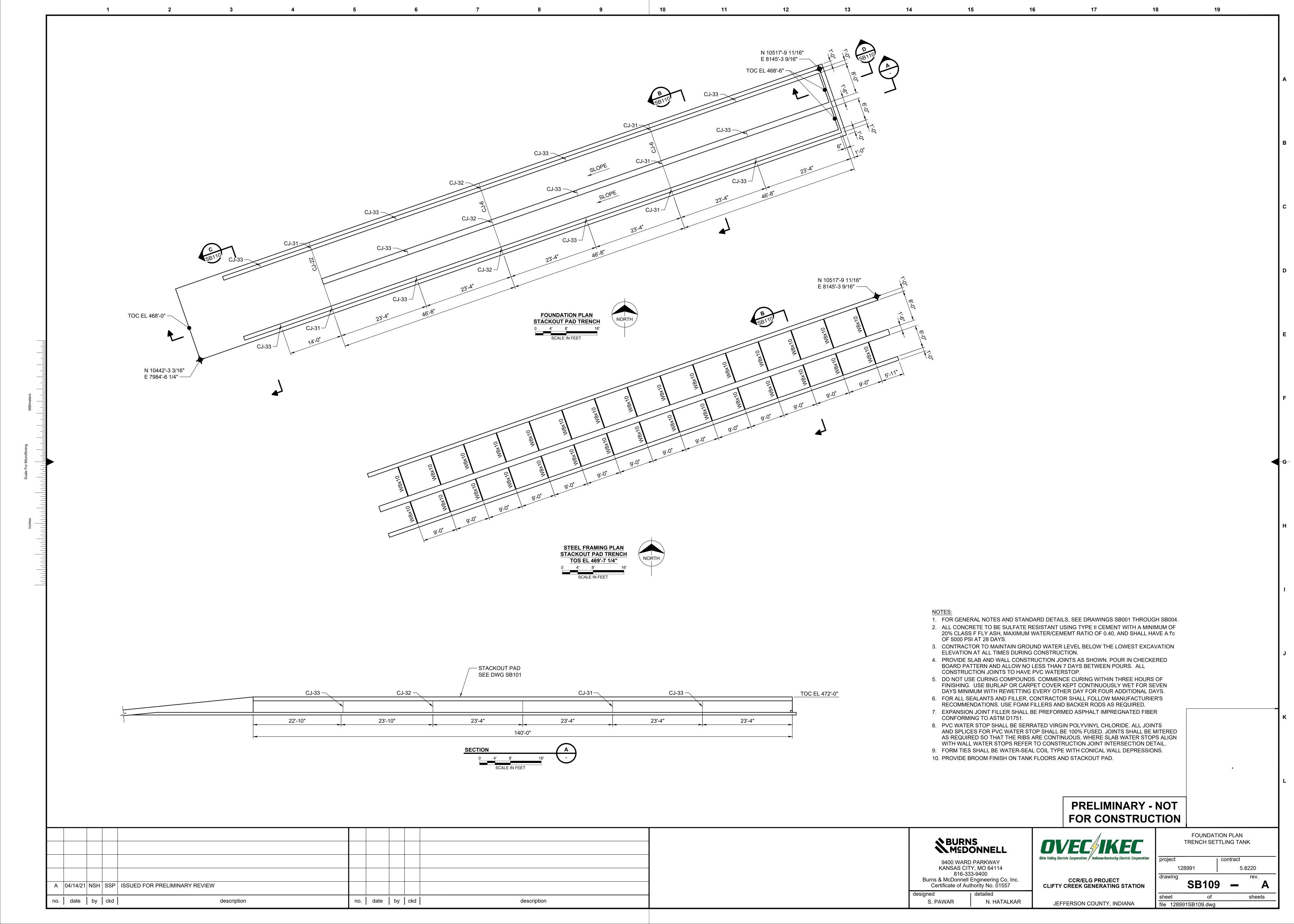

Revision Sheet

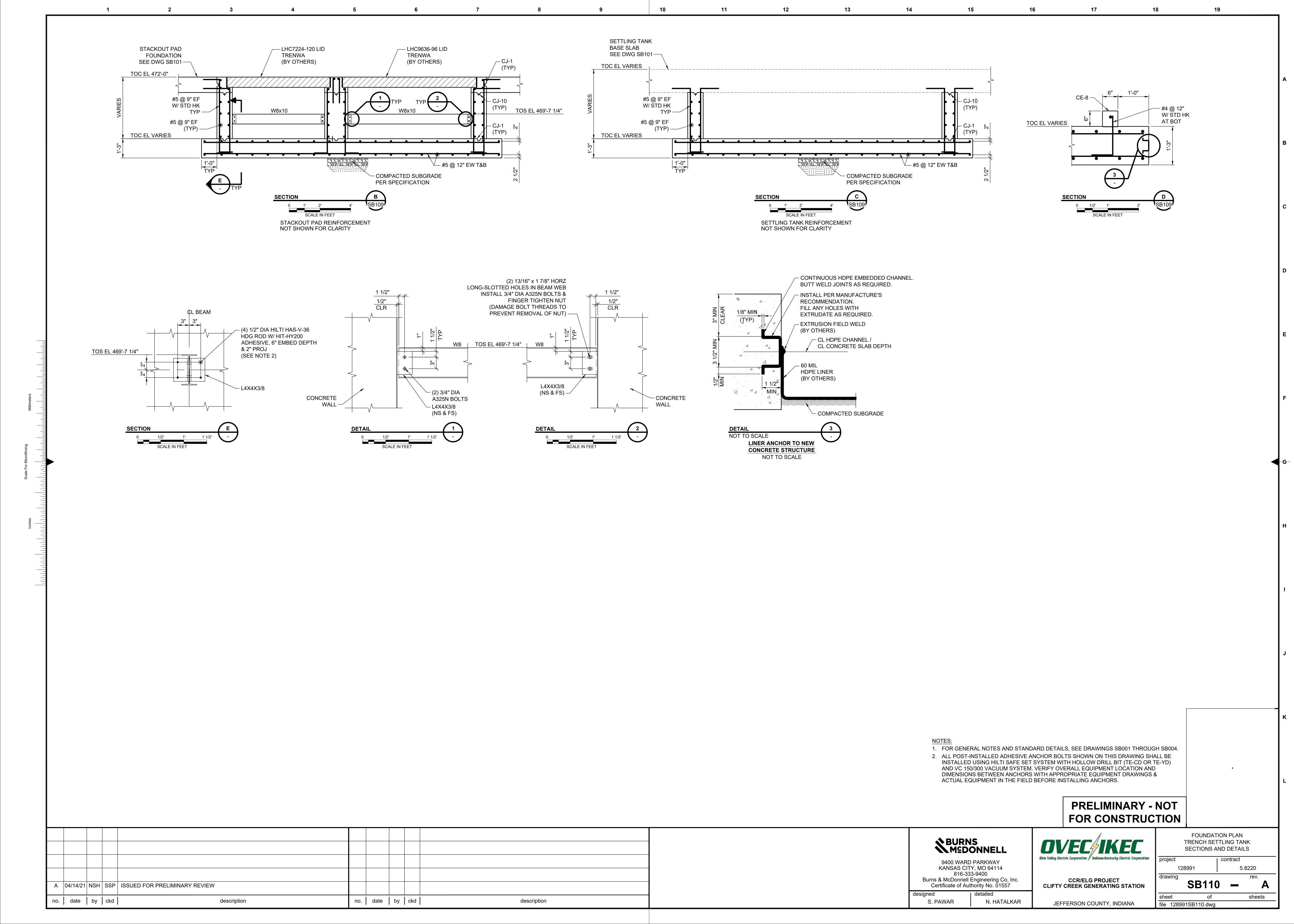

Scale


AS SHC


Drawing


AS SHOWN
Drawing No.
P-WBSP2-504-DT4





APPENDIX H

Ditch Sizing Calculations

Ohio Valley Electric Corporation /	_
Indiana-Kentucky Electric	P
Corporation	Г
Madison Township, Indiana	F

Clifty Creek Station Phase 2-4 Closure – West Boiler Slag Pond

Hydrologic and Hydraulic Analysis Ditch Sizing Calculations

Purpose:

• Calculations to determine sizing of drainage ditches on the final grade closure plan

Methods:

PCSWMM was used to size and model the stormwater ditch network and simulate the peak discharges in the ditches. The model was simulated using the Curve Number Infiltration method and dynamic wave flow routing.

Table 1 - Design Standards and References

Parameter	Design Standard/Method/Source	
Design Storm	25-Year, 24-Hour Recurrence Interval	
Curve Number	TR-55, SCS CN methodology	
Rainfall Temporal Distribution	Soil Conservation Service (SCS) Type II (USDA, 1986)	
Rainfall Intensity	NOAA Atlas 14 Precipitation Frequency Data Server	
Subbasin Area	Delineation based on Permit Drawings Dated	
SUDDUSITI ATEU	04.16.2021	

Parameters:

Climatological Data:

The 25-year, 24-hour storm was used to determine ditch capacity. Peak rainfall depths for the design storm were taken from NOAA Atlas 14 Precipitation Frequency Data Server specific to the geographic location of the Clifty Creek Plant. The selected Point Precipitation depth is shown in Table 1. An SCS Type II temporal distribution was used to model the rainfall hyetograph over the 24-hour duration.

Table 1 - NOAA Atlas 14 PFDS Rainfall Depths

Storm Return	Rainfall
Interval and	depth
Duration	(inches)
25-year, 24-hour	5.30

Watershed Delineation:

Subcatchment delineations were completed in PCSWMM based on the permit design final grade surface. Table 2 provides a breakdown of the subcatchment areas. Subcatchment delineations are shown in Appendix A

Curve Numbers

The NRCS curve number method was used to estimate infiltration during the design storm event. A composite curve number was generated for the watershed using SCS hydrologic soil group data and land use data determined from aerial imagery. Curve number values for each land use and soil type combination were assigned based on the values published in Tables 2-2a through 2-2d in TR-55 (NRCS, 1986). To model the final closed conditions, land uses of "Meadow" (CN = 78) was assumed for the cap liner system and land use of "Open spaces – Fair" (CN = 84) was assumed for regraded areas around the cap. A summary of curve numbers used in this analysis is provided in Table 2

Table 2 – Subbasin Drainage Areas and Curve Numbers

Subbasin	Area (acres)	Composite Curve Number
Primary_Basin	3.44	92
R4	12.41	89
S6	0.49	84
S7	1.29	80
SB12	11.88	83
SB23A	12.73	90
SB24	9.38	79
SB25_2	3.28	85
SB26	6.82	76
Secondary_Basin	13.79	95
WBAP_01	0.06	78
WBAP_02	0.05	78
WBAP_03	1.23	79
WBAP_05	1.46	78
WBAP_06	0.41	79
WBAP_07	0.6	81
WBAP_08	0.51	81
WBAP_09	0.84	79
WBAP_1	0.39	80
WBAP_10	0.95	80
WBAP_11	1	80
WBAP_12	0.44	79
WBAP_13	2.23	78
WBAP_14	0.99	79
WBAP_15	1.19	78
WBAP_16	0.6	78
WBAP_17	1.19	80
WBAP_19	1.71	78
WBAP_2	0.24	80

Table 2 – Subbasin Drainage Areas and Curve Numbers, cont'd

••••••••••••••••••••••••••••••••••••••				
Subbasin	Area (acres)	Composite Curve Number		
WBAP_20	1.2	78		
WBAP_21	8.63	77		
WBAP_22	0.32	78		
WBAP_23	0.93	78		
WBAP_24	5.46	78		
WBAP_25	4.54	77		
WBAP_3	4.5	80		
WBAP_4	8.11	78		
WBAP_5	1.44	79		
WBAP_6	3.17	79		
WBAP_7	0.76	79		
WBAP_8	3.6	82		
WBAP_9	4	80		
WBAP_CL_01	0.87	85		
WBAP_CL_02	0.88	83		
WBAP_CL_03	5.33	85		
WBAP_CL_04	1.1	78		
WBAP_CL_05	4.01	85		
WBAP_CL_06	4.31	83		
WBAP_CL_08	2.18	80		
WBAP_CL_09	1.2	84		
WBAP_CL_1	1.65	78		
WBAP_CL_3	1.79	78		
WBAP_CL_4	1.27	78		

Calculations/Results:

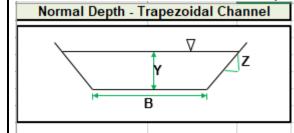
Peak Discharges were calculated in the dynamic PCSWMM model. Peak discharges for each ditch type are shown in the table below

Table 3 – Peak Discharge Calculations

Ditch	Peak 25-year Q (cfs)
West Stormwater Ditch	184.02
East Stormwater Ditch	77.92
Overflow Ditch	119.5
Ditch 10	58.92
Ditch 11	39.2
Ditch 12	44.66

Peak discharges were used to calculate normal depth in the final cover ditches. Ditches were sized to convey the peak discharge accordingly.

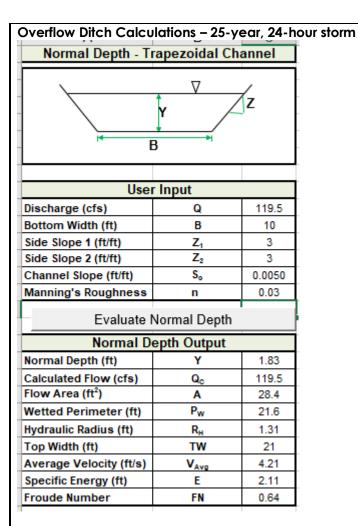
Methods:


Hydraulic calculations were performed to determine minimum ditch size required to convey the peak discharges. Manning's equation was used to estimate flow depth in each ditch. The peak flow calculated was used to size all ditches.

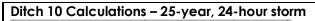
West Stormwater Ditch Calculations – 25-year, 24-hour storm Normal Depth - Trapezoidal Channel User Input 184.02 Discharge (cfs) Bottom Width (ft) В 6 Side Slope 1 (ft/ft) Z₁ 3 Side Slope 2 (ft/ft) Z_2 s, Channel Slope (ft/ft) 0.0050 Manning's Roughness 0.017 n Evaluate Normal Depth

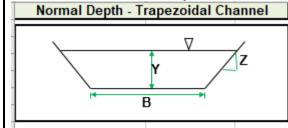
Normal Depth Output Normal Depth (ft) 2.04 Calculated Flow (cfs) 184.0 Q_c Flow Area (ft2) Α 24.8 Wetted Perimeter (ft) Pw 18.9 Hydraulic Radius (ft) 1.31 R_H Top Width (ft) TW 18 Average Velocity (ft/s) V_{Avq} 7.42 Specific Energy (ft) Ε 2.90 Froude Number FΝ 1.12

The maximum estimated depth in the channel is 2.04 feet and is less than the design depth of 4 feet.



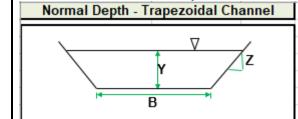
User Input		
Discharge (cfs)	Q	77.92
Bottom Width (ft)	В	6
Side Slope 1 (ft/ft)	Z ₁	3
Side Slope 2 (ft/ft)	Z ₂	3
Channel Slope (ft/ft)	S _o	0.0050
Manning's Roughness	n	0.017


Evaluate Normal Depth


Normal Depth Output		
Normal Depth (ft)	Υ	1.33
Calculated Flow (cfs)	Qc	77.9
Flow Area (ft²)	Α	13.3
Wetted Perimeter (ft)	Pw	14.4
Hydraulic Radius (ft)	R _H	0.92
Top Width (ft)	TW	14
Average Velocity (ft/s)	V _{Avg}	5.87
Specific Energy (ft)	E	1.86
Froude Number	FN	1.06

The maximum estimated depth in the channel is 1.33 feet and is less than the design depth of 4 feet.

The maximum estimated depth in the channel is 1.83 feet and is less than the design depth of 2 feet.

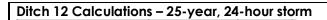

User Input		
Discharge (cfs)	ø	58.92
Bottom Width (ft)	В	4
Side Slope 1 (ft/ft)	Z ₁	3
Side Slope 2 (ft/ft)	Z ₂	3
Channel Slope (ft/ft)	S _o	0.0100
Manning's Roughness	n	0.03

Evaluate Normal Depth

Normal Depth Output		
Normal Depth (ft)	Y	1.48
Calculated Flow (cfs)	Qc	58.9
Flow Area (ft²)	Α	12.4
Wetted Perimeter (ft)	Pw	13.3
Hydraulic Radius (ft)	R _H	0.93
Top Width (ft)	TW	13
Average Velocity (ft/s)	V _{Avg}	4.74
Specific Energy (ft)	E	1.82
Froude Number	FN	0.85

The maximum estimated depth in the channel is 1.48 feet and is less than the design depth of 2 feet.

Ditch 11 Calculations – 25-year, 24-hour storm



User	r Input	
Discharge (cfs)	Q	39.2
Bottom Width (ft)	В	4
Side Slope 1 (ft/ft)	Z ₁	3
Side Slope 2 (ft/ft)	Z ₂	3
Channel Slope (ft/ft)	S _o	0.0050
Manning's Roughness	n	0.03

Evaluate Normal Depth

Normal Depth Output								
Normal Depth (ft)	Y	1.43						
Calculated Flow (cfs)	Qc	39.2						
Flow Area (ft²)	A	11.9						
Wetted Perimeter (ft)	Pw	13.1						
Hydraulic Radius (ft)	R _H	0.91						
Top Width (ft)	TW	13						
Average Velocity (ft/s)	V _{Avg}	3.30						
Specific Energy (ft)	E	1.60						
Froude Number	FN	0.60						

The maximum estimated depth in the channel is 1.43 feet and is less than the design depth of 2 feet.

Normal Depth - Trapezoidal Channel

Usei	r Input	
Discharge (cfs)	ø	44.66
Bottom Width (ft)	В	10
Side Slope 1 (ft/ft)	Z ₁	3
Side Slope 2 (ft/ft)	Z_2	3
Channel Slope (ft/ft)	S _o	0.0050
Manning's Roughness	n	0.03

Evaluate Normal Depth

Normal D	epth Output	
Normal Depth (ft)	Y	1.07
Calculated Flow (cfs)	Qc	44.7
Flow Area (ft²)	A	14.2
Wetted Perimeter (ft)	Pw	16.8
Hydraulic Radius (ft)	R _H	0.85
Top Width (ft)	TW	16
Average Velocity (ft/s)	V _{Avg}	3.14
Specific Energy (ft)	E	1.23
Froude Number	FN	0.60

The maximum estimated depth in the channel is 1.07 feet and is less than the design depth of 2 feet.

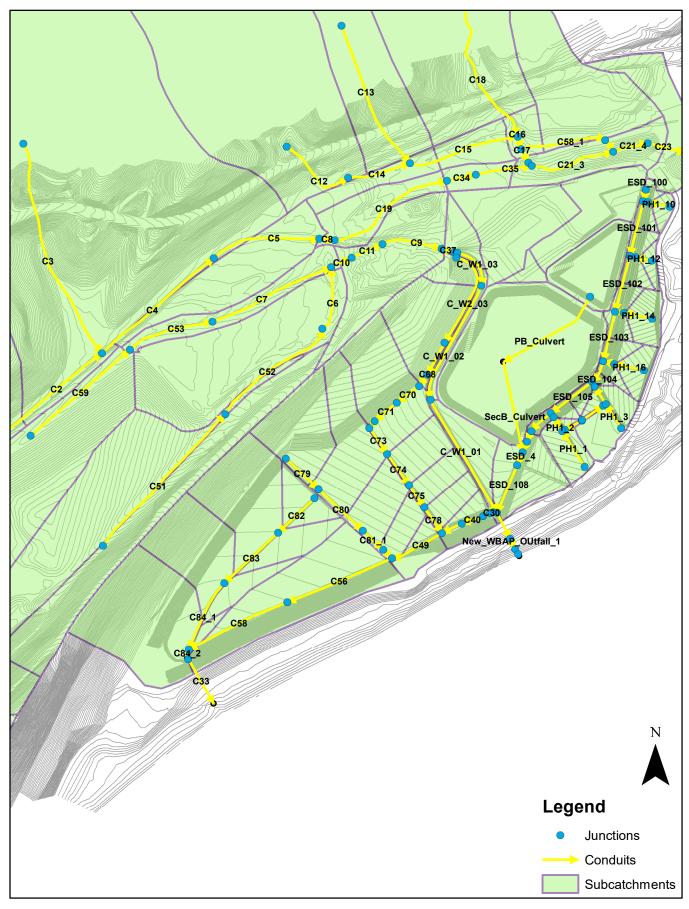
References:

NOAA. (2013). NOAA Atlas 14 Point Precipitation Frequency Estimates. Retrieved July, 2015, from http://dipper.nws.noaa.gov/hdsc/pfds/

USDA. (1986). Urban Hydrology for Small Watersheds, TR-55. United States Department of Agriculture.

Indiana Department of Transportation – 2013 Design Manual, Chapter 202 Hydrology, Revision Date Feb. 2014

Attachments:


Attachment A: Final Grade Subbasin Boundaries

Calculation Performed by: Stantec Consulting Services Inc.

Prepared by: Brenton Newswanger Reviewed by: Nick Mueller

Revisions:R0

Appendix A - Subbasin Boundaries

APPENDIX I

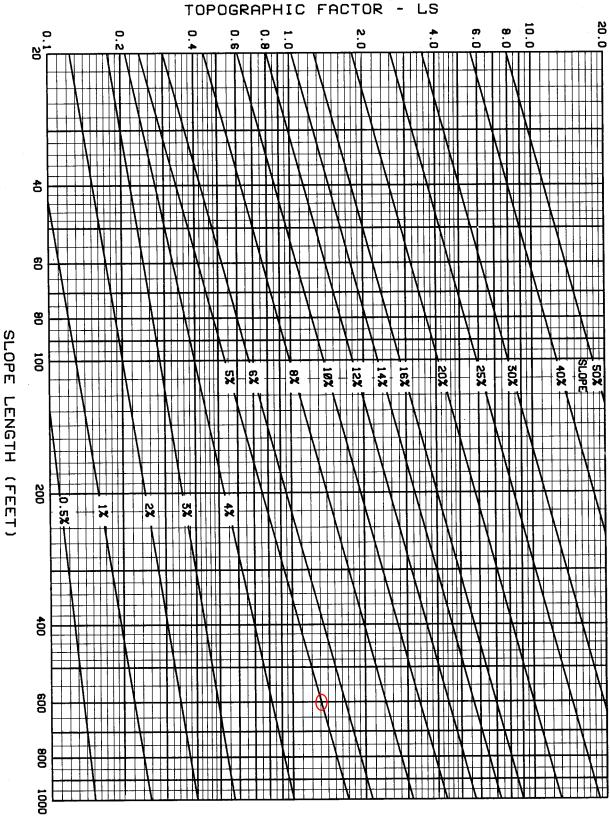
Final Cover Soil Loss

Designed by: E Clare

West Boiler Slag Pond Closure Plan

Final Cover Soil Loss Calculations - Phase 2 - 4

175539026


Clifty Creek Station

Madison, Jefferson County, Indiana

Γhe Ur																							
	nive	rsal	Soil	l Lo:	ss E	gua	atior	n (U	JSLI	E) is	3:												
Α	= (R)(L	.S)(P)(k	()(C	(
vhere:							ons			ear,													
							ion																
										epne e fa		acto	or,										
							ty fa				ClOI	,											
							COVE																
				-9																			
Jnder :	329	IAC	10	-30	-2, t	he i	final	CO	ver	mus	t ha	ve	a m	axir	nun	er er	osic	n ra	ite d	of fiv	ve to	ons	per
cre pe	er ye	ear.	Th	eref	ore	, A :	≤ 5.0	0 to	ns/a	acre	/yea	ar.											
															5445	/5	CACT/	ND F00	1101 5				
10	0 /-	41		4		-I:				\parallel					RAINFA	ALL (R	FACTO	T FOR	19000000	ĺ			
R = 18	٠,	outr	neas	sterr	ı inc	diar	ıa ır	1										1	140				
igure	54)																	160	/				
S = 0.	34									\dagger					-	/	7						
or a 27	_	oot	dista	ance	e at	2.5	% s	lope	e	\parallel													
such a																							
ssum	ing	bare	e ea	rth	prio	r to										1	180		\				
iprap/g										Ť					{	\				}			
USDA	, Al	153	7, 19	981	- at	tac	hed)—		\parallel					} 2	000			~	3			
P = 1.0										\parallel					1	- 1	\	1	/				
	M)														220 /		1	1					
1 -	_													No.	550	\n	Jose	5					
(= 0.4	3									 -	F4	M	-£ l	1	250	~	Jose	<i></i>	4	:4	_1	/D f-	
(= 0.4 (= 0.0	.3)1	tate	Boa	ard o	of H	eal	th, 1	1986	6	_					a sho							(R fa	ctor
(= 0.4 (= 0.0 ndian	3)1 a Si						th, 1	1986	5	_					a sho							(R fa	ctor
C = 0.4 C = 0.0 ndian mem	3)1 a St orai	ndui	m at	tacl	ned)				1 - h	ttps://w	ww.agi	y.purc	lue.edu	ı/soils_	iudgin	g/new_	manua	al/ch6-v	vater.h	ntml		
= 0.4 = 0.0 ndian mem	3)1 a St orai	ndui	m at	tacl	ned)				1 - h	ttps://w	ww.agi	y.purc	lue.edu	ı/soils_	iudgin	g/new_	manua	al/ch6-v	vater.h	ntml		
C = 0.4 C = 0.0 ndian mem	3)1 a St orai	ndui	m at	tacl	ned)				1 - h	ttps://w	ww.agi	y.purc	lue.edu	ı/soils_	iudgin	g/new_	manua	al/ch6-v	vater.h	ntml		
x = 0.4 c = 0.0 Indian mem x = (18	3)1 a St orai 30)((ndui 0.34	m at	taci 00)(ned (0.4) 3)(0).01) = (0.26	1 - h	ns/a	ww.agi	y.purd	r fo	r a s	iudging	e le	ngth	n of	275	fee	et at	2.5
= 0.4 = 0.0 ndian mem = (18	3)1 a St orai 30)((ndui 0.34 s 2,	m at)(1. 3, a	ttacl	ned 0.4 4, tł) 3)((ne s).01 stee) = (pes	0.26 t slo	ope	ns/a	cre/	y.purc yea ing	r fo	//soils_ r a s 2.3:	lop 1 a	e le	ngth	n of	275	fee	et at	2.5 s) is
= 0.4 = 0.0 ndian mem . = (18 or Ph.	.3 01 a Storai 30)((ase	ndui 0.34 s 2, a m	m at)(1. 3, a axin	ttacl 00)(and num	0.4 4, th) 3)(0 ne s w p	0.01 stee ath) = (pes of a	0.26 t slo	ope	ns/a (exc	cre/ clud	yea ing	r fo	r a s 2.3:	lop 1 a	e le nd 3	ngth	of ditch	275 1 sic	fee	et at	2.5 s) is
= 0.4 = 0.0 ndian mem . = (18 or Ph.	.3 01 a Storai 30)((ase	ndui 0.34 s 2, a m	m at)(1. 3, a axin	ttacl 00)(and num	0.4 4, th) 3)(0 ne s w p	0.01 stee ath) = (pes of a	0.26 t slo	ope	ns/a (exc	cre/	yea ing	r fo	r a s 2.3:	lop 1 a	e le nd 3	ngth	of ditch	275 1 sic	fee	et at	2.5 s) is
= 0.4 = 0.0 ndian mem . = (18 or Ph.	3 01 a Storai 30)(0 ase	ndui 0.34 s 2, a m	m at)(1. 3, a axin	ttacl 00)(and num	0.4 4, th) 3)(0 ne s w p	0.01 stee ath) = (pes of a	0.26 t slo	ope	ns/a (exc	cre/	yea ing	r fo	r a s 2.3:	lop 1 a	e le nd 3	ngth	of ditch	275 1 sic	fee	et at	2.5 s) is
C = 0.4 C = 0.0 Indian mem C = (18 For Ph.	3 01 a Storai 30)(0 ase	ndui 0.34 s 2, a m	m at)(1. 3, a axin	ttacl 00)(and num	0.4 4, th) 3)(0 ne s w p	0.01 stee ath) = (pes of a	0.26 t slo	ope	ns/a (exc	cre/	yea ing	r fo	r a s 2.3:	lop 1 a	e le nd 3	ngth	of ditch	275 1 sic	fee	et at	2.5 s) is
C = 0.4 C = 0.0 Indian mem C = (18 For Ph.	3 01 a Storai 30)(0 ase	ndui 0.34 s 2, a m	m at)(1. 3, a axin	ttacl 00)(and num	0.4 4, th) 3)(0 ne s w p	0.01 stee ath) = (pes of a	0.26 t slo	ope	ns/a (exc	cre/	yea ing	r fo	r a s 2.3:	lop 1 a	e le nd 3	ngth	of ditch	275 1 sic	fee	et at	2.5 s) is
C = 0.4 C = 0.0 Indian mem C = (18 For Ph.	3 01 a Storai 30)(0 ase	ndui 0.34 s 2, a m	m at)(1. 3, a axin	ttacl 00)(and num	0.4 4, th) 3)(0 ne s w p	0.01 stee ath) = (pes of a	0.26 t slo	ope	ns/a (exc	cre/	yea ing	r fo	r a s 2.3:	lop 1 a	e le nd 3	ngth	of ditch	275 1 sic	fee	et at	2.5 s) is
C = 0.4 C = 0.0 Indian mem A = (18 For Ph	3 01 a Storai 30)(0 ase	ndui 0.34 s 2, a m	m at)(1. 3, a axin	ttacl 00)(and num	0.4 4, th) 3)(0 ne s w p	0.01 stee ath) = (pes of a	0.26 t slo	ope	ns/a (exc	cre/	yea ing	r fo	r a s 2.3:	lop 1 a	e le nd 3	ngth	of ditch	275 1 sic	fee	et at	2.5 s) is
- 1	3 01 a Storai 30)(0 ase	ndui 0.34 s 2, a m	m at)(1. 3, a axin	ttacl 00)(and num	0.4 4, th) 3)(0 ne s w p	0.01 stee ath) = (pes of a	0.26 t slo	ope	ns/a (exc	cre/	yea ing	r fo	r a s 2.3:	lop 1 a	e le nd 3	ngth	of ditch	275 1 sic	fee	et at	2.5 s) is
X = 0.4 C = 0.0 Indian mem X = (18 For Ph	3 01 a Storai 30)(0 ase	ndui 0.34 s 2, a m	m at)(1. 3, a axin	ttacl 00)(and num	0.4 4, th) 3)(0 ne s w p	0.01 stee ath) = (pes of a	0.26 t slo	ope	ns/a (exc	cre/	yea ing	r fo	r a s 2.3:	lop 1 a	e le nd 3	ngth	of ditch	275 1 sic	fee	et at	2.5 s) is

Checked by:

N Mueller

= angle of slope; and $\mathbf{m}=\mathbf{0.2}$ for FIGURE 4.—Slope-effect chart (topographic factor, LS). LS $= (\lambda/72.6)^{11}$ (65.41 $\sin^2\theta + 4.56$ sin $\theta + 0.065$) where $\lambda = \mathrm{slope}$ length in feet; $\theta = \mathrm{angle}$ of gradients < 1 percent 0.3 for 1 to 3 percent slopes, 0.4 for 3.5 to 4.5 percent slopes, and 0.5 for slopes of 5 percent or steeper.

3/2 Form 4336

STATE BOARD OF HEALTH

INDIANAPOLIS

OFFICE MEMORANDUM

DATE:

January 3, 1986

m:

James E. Traylor

THRU:

Bruce Palin

FROM:

Duane Leith

Engineering Section

Technical Support Branch

SUBJECT: Guideline for the Evaluation of the

Erosion Potential of Landfill Covers

Sanitary landfill covers should be designed for erosion control in order to avoid later exposure of the refuse and infiltration into the refuse. The design standards which are used can be controlling factors for the size and steepness of a landfill and are therefore often the basis for deciding when a landfill will have to close. It is therefore important to have reasonable and defensible standards. The most recent guidance available to staff in this regard is a memo by Mr. Larry Dunbar dated October 17, 1984, entitled "Evaluation of Design of Final Cover for Landfills." Certain publications recently available to staff and conversations with staff of the Soil Conservation Service have led to the conclusion that the guidance contained herein would be more appropriate than the previously-mentioned memo.

The Governor's Soil Resource Study Commission has proposed goals for erosion and sediment reduction as set forth in their report "Indiana's Erosion and Sedimentation Situation." Briefly, these goals are to reduce erosion on all land to an average annual rate denoted as "T" or the tolerable limit, which prevents depletion of the soil resource and to control all off-site sedimentation by application of best available technology. "T" is the rate at which the soil replaces itself. It is based on factors such as soil depth, texture, and permeability; its value is a matter of judgment rather than being quantifiable. The value of "T" is reported to range between two and five plus tons/acre/year. A value of five tons/acre/year is recommended as a standard under this guideline with an exception as noted.

The currently accepted method for determining the erosion potential of landfill covers is found in Agriculture Handbook 537 Predicting Rainfail Erosion Losses, which is available from SCS offices. Application of the Universal Soil Loss Equation (USLE) from Agriculture Handbook 537 is conducted as follows:

A = RKLSCP, where:

A is the average soil loss in tons per acre calculated on an annual basis for landfill design.

R is the rainfall and runoff factor as obtained from the map Figure 1, inserted between pages 6 and 7 of the handbook, copy is attached to this document. This value ranges from 130 to 225 depending on location.

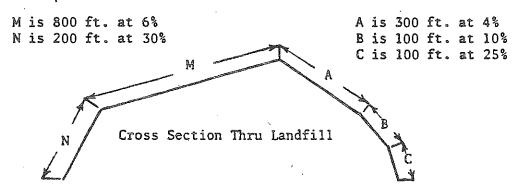
K is the soil erodibility factor as obtained from Figure 3 on page 11 of the handbook (copy attached), for the composition, structure and permeability of the surface soil as replaced over the landfill. This generally ranges from .30 to .50. If the soil source or characteristics are unknown, it has been recommended that a value of 0.43 be used for landfills.

LS is the combined topographic factor for the length and slope which can be found from Table 3 on page 12, or the chart on page 13 of the handbook, copies of which are attached. Most landfills will have irregular convex slopes. The LS value for irregular slopes is determined by the procedures specified on page 16 of the handbook. The slope is divided into successive equal length segments of uniform slope. The LS factor is obtained for each segment at its respective slope and at a length equal to the total slope length. This LS factor is then adjusted by the "fraction of soil loss" figures shown under the column M = 0.5 in Table 4 on page 15 of the handbook, copies attached. Alternatively, this figure can be obtained from the equation

Soil loss fraction = 1m+1 - (1-1)m+1

Nm+1

where: i = segment sequence number, m = slope length exponent of 0.5 for slopes greater than or equal to five percent.


N = the number of equal length segments into which the slope was divided. The sum of the adjusted LS values is the LS value to be used for the entire slope.

C is the cover and management factor which can be found from Table 10 on page 32 of the handbook, or the copy attached. For properly prepared and seeded landfill covers which will be maintained in sod, use a value of 0.01. If a different vegetative cover is planned, adjust the value to reflect the anticipated conditions using Tables 5 through 12 of the handbook. A value of C lower than 0.01 should be allowed only with very intensive specifications regarding cover preparation, fertilization, seeding, and management. In order to establish high productivity, staff of the Soil Conservation Service discussed fertilization rates of 1,000 lbs/acre and contractor prices for fertilization, mulching, and seeding of \$700 to \$1,000 per acre.

¹ Verbal communication with Mr. Raymond Sinclair of the Soil Conservation Service on October 7, 1985.

P is the supporting practices factor. For landfills, the value of P is 1.00, unless the site is to be used as cropland. Use the figures from Table 13 on page 35 and Table 14 on page 36 of the handbook as required for landfills used for cropland.

Sample calculation:

To determine A values for slopes A, B, C, and M, N:

For slopes A, B, and C

- R = 175, for Marion County location on the rainfall and runoff map.
- K = 0.43, assumed typical value since actual soil samples have not been tested.
- 3. LS determination:

Total Slope Length	Segment	Slope	LS Value from Figure 4	Adjustment Factor from Table 4	Revised LS Value
500 ft (5	A1 A2	42	.76 .76	.09	.07 .12
segments	a3	42	.76 .76	16 21	. 16
of 100 ft	B4	102	3.06	.25	.77
each)	C5	25%	13.20	.28	3.70
					otal 4.82

- 4. C = 0.01, from grass sod, well maintained.
- 5. P = 1.0, since it is not tilled cropland.

Following the USLE: A = RKLSCP

 $A = 175 \times .43 \times 4.82 \times .01 \times 1.00$, for slope A, B, C

A = 3.63 tons per acre

Since A is less than or equal to five tons per acre, this slope is acceptable.

For slopes M and N

1000 ft	M	62	2.13	。09	.19
(5	M2	6%	2.13	.16	.34
segments	M3	6%	2.13	. 21	.45
of 200 ft	MA	6%	2.13	. 25	.53
each)	H 5	30%	25.57	. 28	7.16
					Total 9 67

 $A = 175 \times .43 \times 8.67 \times .01 \times 1.00$, for slope MN

A = 6.52 tons per acre

Since A is greater than five tons per acre, this slope is not acceptable.

It has been suggested that a possible way for a facility to have a cover with an A value higher than five would be to increase the cover depth on the lower slopes. The increased depth can allow for the formation of gullies which can then be stone-lined or similarly stabilized. Whether the increased A value should be allowed and the calculation of the necessary depth increase is not within the scope of this guidance. Erosion control is not the only factor to be considered in cover design. Other factors, such as prevention of ponding, slope stability, drainage, and feasibility of maintenance, will need to be considered.

In conclusion, it is recommended that sanitary landfill covers be designed for an A value not greater than five tons/acre/year, as determined by the Universal Soil Loss Equation from Agriculture Handbook 537. It is further recommended that a K value of 0.43 be used in calculating the A value for typical landfill soils.

References and documents.

- 1. Predicting Rainfall Erosion Losses, 1978, Agricultural Handbook 537, U.S.D.A.
- Indiana's Erosion and Sediment Situation, 1984, Governor's Soil Resources Study Commission.
- 3. Dunbar, Larry, Office Memo to Engineering Staff, October 17, 1984.
- Design and Construction of Covers for Solid Waste Landfills, 1979, EPA-600/2-79-165, U.S. EPA.

Surdelin	e No.	
Comment	period	ends

CA Singly Man.

APPENDIX J

WBSP Phases 2-4 Quality Management Plan (QMP)

Construction Quality Management Plan (QMP)

West Boiler Slag Pond Closure Phases 2-4 and Low Volume Waste Treatment System

Clifty Creek Plant Jefferson County, Madison, Indiana

Issued for Bid - 60% Design

Prepared for:

Indiana-Kentucky Electric Corporation

Prepared by:

Stantec Consulting Services Inc.

May 21, 2021

Abbreviations

CCR Coal Combustion Residuals

CM Construction Manager

CQA Construction Quality Assurance

CQC Construction Quality Control

EDC Engineering during Construction

EOR Engineer of Record

EM Engineering Manager

FR Field Representative

FTP File Transfer Protocol

IKEC Indiana-Kentucky Electric Corporation

LVWTS Low Volume Wastewater Treatment System

NCR Nonconformance Reports

OD Observed Deficiency

POD Plan of the Day

QMP Quality Management Plan

RFI Request for Information

WBSP West Boiler Slag Pond

Table of Contents

1.0	INTRODUCTION	. 1
1.1	PURPOSE	
1.2	SCOPE OF WORK	
1.3	CONSTRUCTION QUALITY CONTROL AND QUALITY ASSURANCE	. 1
1.4	SURVEY REQUIREMENTS	. 3
1.5	LIMITATIONS	. 3
1.6	WORKING ON ASH	. 3
2.0	ORGANIZATION AND RESPONSIBILITIES	
2.1	PROGRAM ROLES AND RESPONSIBILITIES	
	2.1.1 Owner 2.1.2 Engineer of Record (EOR)	
	2.1.3 CQA Manager	
	2.1.4 Contractor	
	2.1.5 Subcontractor	
2.2	STOP WORK AUTHORITY	
3.0	QUALITY ASSURANCE	
3.1	QUALITY ASSURANCE TEAM	_
	3.1.1 Roles and Responsibilities	
3.2	3.1.2 Materials TestingQUALITY ASSURANCE DAILY FIELD OBSERVATIONS	
ა.∠	3.2.1 General	
	3.2.2 Conformance Verification	
4.0	QUALITY CONTROL	
4.1	SURVEY REQUIREMENTS	
4.2	CQC EXECUTION AND PLAN PREPARATION	
4.3	CQC PLAN REQUIREMENTS	
4.4	TESTING SCHEDULE	
4.5	SUBMITTALS AND REQUEST FOR INFORMATION	
	4.5.1 Submittals	
4.6	4.5.2 Request for Information	
4.6	MEETINGS	
	4.6.2 Daily Meetings	
	4.6.3 Weekly Meetings	
	4.6.4 Additional Meetings	
	•	
5.0	QUALITY MANAGEMENT DOCUMENTATION	
5.1	PROJECT DOCUMENTATION	12

5.2	CQA DC	DCUMENTATION	14
	5.2.1	CQA Daily Field Report	14
	5.2.2	Photographs	14
	5.2.3		14
	5.2.4	Observed Deficiencies (ODs)	14
	5.2.5	Nonconformance Reports	15
5.3	PLANS .	AND TECHNICAL SPECIFICATIONS REVISIONS	16
5.4	CQC DC	DCUMENTATION	16
	5.4.1	CQC Daily Report	16
	OF TABL	ES orting Responsibility	13
LIST	OF FIGUR	RES	
Figur	e 1-1. Gei	neral Program Structure for CQC/CQA Program	2
LIST	OF APPE	NDICES	
ATTA	ACHMENT	A MATERIAL TESTING SCHEDULE	

Introduction

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of the Construction Quality Management Plan (QMP) is to promote quality of the constructed work. It consists of three main components, namely, Construction Quality Control (CQC), Construction Quality Assurance (CQA), and Engineering during Construction (EDC). The CQC activities are the Subcontractor's responsibility. The CQA activities are an audit process, performed by the CQA Team, to make sure that the Subcontractor's CQC plan is implemented and on track. EDC activities consist primarily of reviewing and responding to Subcontractor submittals and requests for information (RFIs), and general design support throughout construction.

This Construction QMP provides guidance to the project team and establishes assessment, reporting, and documentation procedures to be implemented throughout the project. Where conflict arises between the requirements of this QMP and the contract documents, the most stringent requirements shall govern.

This QMP describes the CQC and CQA management structure, personnel requirements, and minimum project requirements. This QMP also serves as an outline to develop site-specific protocols based on conditions encountered during the work.

1.2 SCOPE OF WORK

This Construction QMP has been prepared for the West Boiler Slag Pond (WBSP) Closure Phases 2-4 and Low Volume Wastewater Treatment System (LVWTS) project.

This project is the final three of four total phases of closure at the WBSP. Phases 2-4 generally consist of the following activities:

- Grading existing coal combustion residuals (CCR) to proposed subgrade elevations.
- Constructing settling tanks and the primary and secondary treatment basins.
- Constructing drainage ditches and a new outfall.
- Installing a final cover system consisting of an LLDPE geomembrane, geocomposite drainage layer, and cover soil.
- Constructing access roads and ramps.

1.3 CONSTRUCTION QUALITY CONTROL AND QUALITY ASSURANCE

The QMP establishes the requirements for CQC and CQA. It outlines roles, responsibilities, CQC and CQA activities, and establishes project processes and procedures. The CQC/CQA Program structure is shown below as Figure 1-1.

Introduction

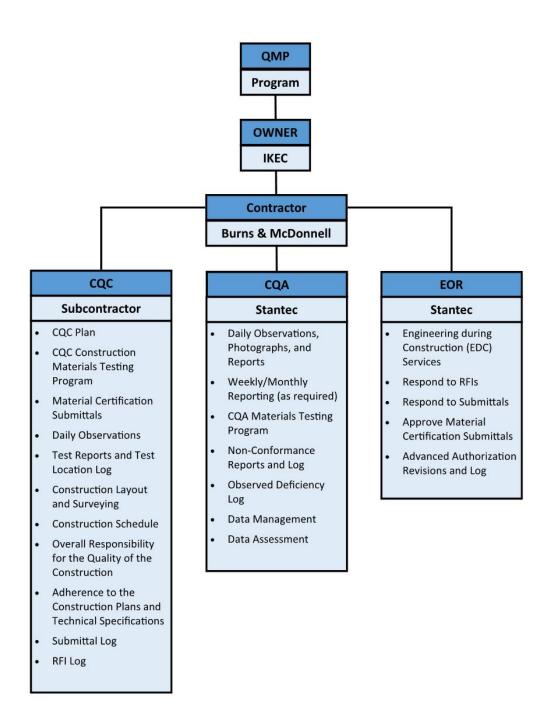


Figure 1-1. General Program Structure for CQC/CQA Program

Introduction

1.4 SURVEY REQUIREMENTS

The Subcontractor shall provide construction layout services to execute the work according to the contract documents. Final as-built surveys and CQC surveys will be conducted by the Subcontractor and may be supplemented with surveys conducted by the Owner, Contractor, CQA Manager, or identified representative. As-built surveys shall be performed under the supervision of a professional surveyor licensed in the state of Indiana.

1.5 LIMITATIONS

The QMP does not include any facility elements outside the limits of construction designated on the Plans for Construction.

1.6 WORKING ON ASH

The Subcontractor shall be aware that there are inherent risks associated with working on CCR, including but not limited to, soft bearing conditions and unstable slopes. failures and instabilities may occur on apparently firm surfaces when loaded, or during active drawdown and dewatering. It is the Subcontractor's responsibility to actively manage their equipment and personnel to safely execute the work, the Subcontractor shall provide an access and excavation work plan that outlines their means and methods for working on CCR surfaces. The plan shall include sequencing of work and note the equipment and materials used.

Subcontractor is responsible for maintaining the stability of the CCR surfaces and perimeter dikes during construction. Subcontractor shall develop a monitoring plan detailing the type of monitoring to be performed (visual, installation of geotechnical instrumentation, or other methods). The plan shall also include, at a minimum, the potential for sloughing or instability of the perimeter dikes due to groundwater levels, how the risks will be mitigated, and how progressive failures along the perimeter dikes will be reduced and mitigated. the monitoring plan shall be submitted to the owner and their representative for review and approval.

The Subcontractor is responsible for all site safety and near surface ash stability at the site and shall follow all OSHA, Contractor, and owner safety requirements including but not limited to man on the ground exclusion zones. Furthermore, the Subcontractor shall provide to the owner a slope stability analysis prepared by a Registered Engineer in the State of Indiana for all excavations 10-feet or greater located outside of the exclusion zones or as directed by the Contractor. All evaluated excavations will require a minimum factor of safety of 1.3. The Subcontractor shall also prepare and provide to the owner for review a plan outlining all exclusion zones to include, but not limited to, barriers, setbacks, signage, and guidelines for entry.

Organization and Responsibilities

2.0 ORGANIZATION AND RESPONSIBILITIES

2.1 PROGRAM ROLES AND RESPONSIBILITIES

The major participants in the project are listed below along with a description of their roles. An organizational chart is provided in Figure 1-1.

2.1.1 Owner

The plant and its ancillary functions are owned and operated by the Indiana-Kentucky Electric Corporation (IKEC). The Owner will administer communication with any regulatory agencies, including any related permit modifications. The Owner has contracted with the Contractor to serve as the Construction Manager (CM) who shall approve any design and/or QMP revisions.

2.1.1.1 Construction Manager (CM)

The Construction Manager (CM) is responsible for coordinating with the Subcontractor regarding contractual issues, including scope, budget, and schedule. In addition, the CM will provide daily oversight of the construction activities. The CM has the authority to stop work that is not in conformance with the Plans for Construction and Technical Specifications. The CM is responsible for tracking submittals and RFIs. The CM will then distribute the submittals and RFIs, as needed, to the appropriate party.

In addition, the CM or qualified representative shall perform at least monthly inspections of the WBSP facility. These inspections shall include observations of all outslopes for indications of slope instability including tension cracks, sloughs, and excessive seepage. These inspections shall be documented and retained within the project records. Any suspect site conditions shall be promptly reported to the Owner.

2.1.2 Engineer of Record (EOR)

The Engineer of Record (EOR) is responsible for development of the technical components of the project. During field implementation, the Engineer will provide support to the CQA Team for construction observation and CQA services.

Specific examples of Engineer responsibilities include responding to technical RFIs and submittals, supporting the CQA team, and review of field-testing data.

2.1.3 CQA Manager

The Construction Quality Assurance (CQA) Manager shall be responsible for the execution of the CQA program and related documentation as outlined in the QMP for all work performed. The CQA Manager shall be a Professional Engineer licensed in the state of Indiana.

2.1.4 Contractor

The Prime Contractor (Contractor) holds the Engineering, Procurement, and Construction contract directly with the Owner. The Contractor is responsible for coordinating the design, procurement, and construction work to complete the project. The Subcontractor (CQC Team), CQA Team and Engineer are contracted with the Prime Contractor for execution of the project.

Quality Assurance

2.1.5 Subcontractor

The Subcontractor is responsible for execution of the work in accordance with the contract documents. The Subcontractor is solely responsible for field implementation activities, including instrumentation and monitoring. The Subcontractor will collaborate with the CM to propose adjustments (if needed) to the scope of work depending on encountered conditions. Review and approval of scope of work adjustments shall be made by the Engineer.

Specific examples of Subcontractor responsibilities include, but are not limited to, data collection and providing that data to the Owner; development and implementation of the CQC Plan, including development of applicable procedures, processes, and work plans; reporting in accordance with the Technical Specifications; CQC materials testing; quantity tracking; conformance to the Technical Specifications; and structure and ground movement monitoring data collection and reporting.

2.1.5.1 Construction Quality Control Manager

The Subcontractor's CQC Manager shall have a minimum of five years of construction experience and be a full-time on-site employee of the Subcontractor. The Subcontractor CQC Manager is responsible for the Subcontractor's tests, inspections, processes, and related actions during and after construction execution to evaluate that both the actual products used, and the completed construction comply with the requirements of the Plans for Construction and Technical Specifications. The CQC Manager shall report to the Subcontractor's principal officers and the CM.

2.2 STOP WORK AUTHORITY

The EOR, CQA Manager, CM, and CQC Manager may exercise stop work authority when concerns related to quality are identified. In situations where personnel safety is concerned, any project personnel may stop work at any time.

3.0 QUALITY ASSURANCE

Construction Quality Assurance (CQA) is the responsibility of the Contractor, Engineer, and CQA Team. CQA includes assessments, observations, and reporting to document that the implementation of the work performed by the Subcontractor meets the requirements of the Plans for Construction and Technical Specifications. The CQA Team functions as the field representative for the Engineer through performance of assessments, verifications, and observations. Specific CQA responsibilities are listed as follows:

- Daily field report of construction activities including photographs.
- Noting observed deficiencies (ODs) during construction that require correction.
- Reviewing applicable Subcontractor submittals and Requests for Information (RFIs) related to quality for adherence to project requirements.
- Reviewing test data for compliance with project requirements and specifications.
- Performing assessments of the Subcontractor CQC Plan to ensure adherence to the QMP.

Quality Assurance

- Reviewing the Subcontractor documentation deliverables for conformance with project requirements.
- Periodic material testing to audit CQC test results.
- Reporting of test results.
- Special testing requested by the Owner.

3.1 QUALITY ASSURANCE TEAM

3.1.1 Roles and Responsibilities

The CQA Team serves as observers of field implementation of the construction documents and to provide CQA documentation. The CQA Team is responsible for the execution of the CQA Plan and related documentation as outlined herein. Individual roles and responsibilities for the CQA Team members are defined below. Personnel assignments are subject to change, if qualification requirements are met and approved by IKEC.

3.1.1.1 Construction Quality Assurance (CQA) Manager

A professional engineer licensed in the State of Indiana shall be designated as the CQA Manager. The CQA Manager shall be responsible for administering the CQA program and advising the CQA Team.

The CQA Manager will be responsible for the following tasks:

- Observing conformance with the QMP by reviewing and documenting project records and activities;
- Managing overall implementation of the CQA program;
- Evaluating the testing results of the CQC program;
- Evaluating work for conformance with the project plans and specifications and notifying the CM if work is non-compliant with the contract documents;
- Managing the documentation of all CQA activities;
- Reviewing progress of the work and reports prepared by the Subcontractor as part of the CQC Plan;
- Verify the appropriate test standards are used for the methods to conduct assessments and field and laboratory testing for CQA testing;
- Evaluating and auditing the results of CQC and CQA assessments and testing; and
- Review daily field reports prior to submittal to the CM and EOR.

Quality Assurance

3.1.1.2 Construction Quality Assurance (CQA) Supervisor

The Construction Quality Assurance (CQA) Supervisor provides oversight for the CQA Field Representative(s) on site. The CQA Supervisor is familiar with the materials to be used, the observations and testing to be done, and the functional intent of the QMP. The CQA Supervisor has responsibility for:

- Coordination of the periodic CQA construction testing in the field;
- Coordination of other testing with a commercial laboratory (as needed);
- · Provides support to field CQA staff;
- Plans and directs the activities of CQA field representative(s); and
- Reviews Daily Field Reports.

In conjunction with their staff, the CQA Supervisor reviews daily field reports and directives, and reports to the CQA Manager any situation where the Plans for Construction and Technical Specifications do not appear to be appropriate for the conditions encountered.

The CQA Supervisor reviews Nonconformance Reports and has authority to stop work due to adverse quality conditions or potentially unsafe work practices. The CQA Supervisor reports to the CQA Manager. The CQA Supervisor will be on-site an average of one day per month for the duration of construction, or as necessary to observe key construction activities to support the CQA team.

3.1.1.3 Construction Quality Assurance (CQA) Field Representative (FR)

The Construction Quality Assurance Field Representative (CQA FR) staff shall consist of qualified personnel working under the direct supervision of the CQA Manager and CQA Supervisor. The CQA Supervisor will be responsible for the day-to-day coordination and management of the CQA FRs.

The CQA FR is responsible for performing quality assurance in the field, and for performing observations of conformance with the Plans for Construction and Technical Specifications. The CQA FR will document the results of the required CQA observations and testing and inform responsible personnel about unsatisfactory items. The CQA FR is also responsible for documenting that corrective actions are taken to resolve the conditions. For defective work, the site-specific CQA FR will initiate a Nonconformance Report and submit the report to the CQA Supervisor.

The duties of the CQA FR are listed below:

- Daily observations of construction activities to verify conformance with project Plans for Construction and Technical Specifications;
- Observe on-site testing performed by CQC team members;
- Perform periodic on-site CQA testing to verify CQC procedures and test results;
- Coordinate required sampling with commercial laboratory for other quality control testing (as needed);

Quality Assurance

- Prepare and submit daily field report of observations, testing results, and photographs;
- Conduct periodic inspection of specific construction items;
- Instrumentation monitoring (as needed);
- Verification that testing is performed and that results meet the Technical Specifications;
- · Verification of Subcontractor's CQC surveying;
- · Reporting of nonconformances; and
- · Reporting of observed deficiencies.

3.1.2 Materials Testing

The CQA Team will perform selected CQA sampling and material testing to audit CQC procedures and test results. The material testing schedule is included in Attachment A. The schedule specifies the anticipated types and minimum number of tests for each material subject to testing and required frequency of testing. The CQA Manager or identified representative is responsible for reviewing the material testing and results and manufacturer's supplied information for conformance to the Technical Specifications.

3.2 QUALITY ASSURANCE DAILY FIELD OBSERVATIONS

3.2.1 General

The CQA Team shall review the Plans for Construction and Technical Specifications for each day's construction activities. After observation of the day's activities, they shall document whether the work that was observed has been done in accordance with the Plans for Construction and Technical Specifications. The CQA Team's observation of work serves as an audit function. It is not to be considered a verification that all work performed was in accordance with the Plans for Construction and Technical Specifications. That responsibility remains with the CQC Team.

Daily observations are to be documented in a CQA daily field report.

Any suspect conditions shall be promptly reported to the CM. Each observation shall be documented on the Daily Field Report form for inclusion with the project records.

3.2.2 Conformance Verification

Conformance verification shall consist of observing and documenting testing performed by the Subcontractor to ensure that the required tests and evaluation of materials and construction products are performed. The CQA Team shall confirm that testing is performed at frequencies specified in this QMP. The CQA Team shall perform periodic testing to verify the results of the Subcontractor. Additional or supplementary conformance testing may be added at the discretion of the CQA Manager. Results shall be reviewed by the CQA Manager to assess conformance with project requirements. Copies of all conformance results shall be included on a CQC testing log and with the project records.

Quality Control

The NCR process shall be used, as needed, to immediately report deficiencies, remediation required, and resolution to the Contractor and Engineer. NCRs may be submitted to the CQA Manager by the CQA Team or Subcontractor. The CM will maintain a log as a record of the non-conformances encountered and the final resolution. A detailed description of the NCR process is provided in Subsection 5.2.5.

4.0 QUALITY CONTROL

Construction Quality Control (CQC) and overall construction/material quality is the responsibility of the Subcontractor. CQC includes establishing procedures and work plans, performing observations, documenting construction processes and performance, and performing materials testing to demonstrate the quality of the constructed elements. Specific CQC items are as follows:

- Ensuring that the Subcontractor's work complies in all respects to the Plans for Construction, Technical Specifications, other contract documents, and any approved changes to the contract documents.
- Developing the CQC Plan.
- Developing work plans, procedures, and submittals related to the work.
- Preparing a daily log of observations and activities.
- Providing data collected during this project to the Contractor.
- Demonstrating the means and methods for complying with the Plans for Construction and the Technical Specifications.
- Performing construction staking and layout.
- Performing construction materials quality control testing and reporting.
- Maintaining an updated construction schedule with CQC/CQA hold point milestones represented.
- · Maintaining calibrations on measuring and testing equipment.
- Providing final as-built surveys and drawings.
- Testing logs, timely submittal of required deliverables, reporting nonconforming conditions to the Engineer, and data management.

4.1 SURVEY REQUIREMENTS

The Subcontractor shall provide field layout services for the purposes of executing the work according to the contract documents. The work shall be laid out and constructed to the elevations shown in the Plans for Construction and in accordance with the Technical Specifications. Tolerances shall be as defined in the Technical Specifications.

Final as-built surveys and CQC surveys will be conducted by the Subcontractor and may be supplemented with surveys conducted by the Contractor or identified representative.

Quality Control

4.2 CQC EXECUTION AND PLAN PREPARATION

The Subcontractor shall prepare a CQC Plan meeting the requirements of this QMP and the project specifications. The CQC Plan must be approved by the Contractor, CM, and Engineer prior to the start of construction. The Subcontractor shall execute CQC activities in accordance with the approved CQC Plan.

4.3 CQC PLAN REQUIREMENTS

The Subcontractor is responsible for establishing and maintaining a CQC Plan for the project to ensure that the project is executed, and items are installed in accordance with the Plans for Construction and Technical Specifications. The objective of the CQC Plan is to provide a framework where a quality product will be produced. The details of the CQC system will be described in the CQC Plan document, which will establish procedures to ensure uniformity and provide a standard by which comparisons can be made.

The CQC Plan shall include, at a minimum, the following to cover all operations, both on-site and off-site, including work by subcontractors and suppliers:

- Organizational Structure: Chart showing the CQC organizational structure, including line of authority.
- Personnel: Names and qualifications, in resume format, for each person in the QC organization.
- Duties, Responsibilities, and Authorities: Duties, responsibilities, and authorities of each person in the QC organization.
- Outside Organizations: List of outside organizations, such as consulting engineering firms, that will be employed by the Subcontractor and a description of services these firms will provide, including decision-making authority (if any).
- Scope of Work: Scope, including testing laboratory information and accreditations and materials testing schedule.
- Submittals: Procedures for reviewing, approving, and managing submittals. Include the name(s) of the person(s) in the QC organization authorized to prepare required submittals, and the initial submittal of the submittal register as specified in the section entitled "Submittal Procedures."
- Completing Rework Items: Procedures for addressing nonconformance, deficient, and rework items.
- Measuring and Testing Equipment: Copies of current certifications for monitoring and testing equipment.
- Documentation Procedures: Documentation procedures, including proposed report/forms formats.
- Training Requirements: Documentation of personnel trained in specifics of the CQC Plan.
- Work Plans and Quality Process Documents.

Quality Control

4.4 TESTING SCHEDULE

It is the responsibility of the Subcontractor to perform tests specified in the Technical Specifications and verify that control measures are adequate to provide a product that conforms to the requirements of the project documents. A material testing schedule outlining minimum CQC and CQA testing frequencies is included in Attachment A. The schedule specifies the anticipated types and minimum number of tests for each material subject to testing. The CQC Manager or identified representative is responsible for verifying that material testing and results conform to the Technical Specifications. The Subcontractor shall maintain a log of all CQC material test results.

4.5 SUBMITTALS AND REQUEST FOR INFORMATION

4.5.1 Submittals

Subcontractor submittals shall be provided to the CM, consistent with the requirements of the Technical Specifications. For material submittals, the Subcontractor shall review and certify that the material conforms to the Plans for Construction and Technical Specifications prior to submittal to the CM.

4.5.2 Request for Information

The Subcontractor shall communicate issues such as constructability, discrepancies in the plans, and requests for Engineer support during field implementation, etc., using the RFI form. RFIs shall be submitted by the Subcontractor to the CM. The CM routes the RFI to the Engineer. The Engineer will prepare a response to the RFI and submit it to the CM. The CM then sends the completed RFI response to the Subcontractor.

The CM, or representative, shall document each RFI in an RFI log and in the project records. The RFI log will be maintained by the CM, or representative, and will be reviewed at the weekly project progress meetings. The Subcontractor is encouraged to engage the Engineer and the Engineering Team prior to RFI submittal in efforts to streamline the RFI process. The Engineer has seven calendar days upon receipt of the RFI to provide a response to the CM. If a quicker response is required by the Subcontractor, this should be noted in the RFI and in the correspondence to the CM.

Any changes to the project that result from the RFI process shall be documented and communicated to the CQA Team and the Subcontractor. Communications shall include discussion of the issue that led to the RFI, the intent of the RFI response, and any resulting changes to the project.

It should be noted that, because of the nature of the project, the RFI process may not be suitable for some of the day-to-day adjustments that will be necessary. Instead, daily collaboration between the CM, Engineer, and Subcontractor field staff will be essential to successfully meet the intent of the project. Such daily adjustments shall be documented in both the CQC daily field report and the CQA daily field report.

4.6 MEETINGS

4.6.1 Orientation Meeting

An orientation meeting (i.e., kickoff meeting) shall be held before field implementation of the QMP. At a minimum, those present will include the CM, the Contractor, the Subcontractor's PM, the CQC Manager,

Quality Management Documentation

the CQA Manager, CQA FR, IDEM, and others as needed. This meeting will include a review of the project document objectives, quality management processes, hold points, and special project requirements. The Subcontractor will prepare meeting minutes and distribute them for review. The Owner shall notify the IDEM permit manager 10 working days prior to the meeting.

Other kickoff meetings may be required before the start of discrete phases of the work.

4.6.2 Daily Meetings

Daily plan-of-the-day (POD) meetings related to safety and construction activities for the day's work shall be conducted by the CM or designated representative. Attendees shall include the CQA FR and the CQC Manager. Other key participants from IKEC, the Engineer, and the Subcontractor will be included in these meetings as appropriate.

4.6.3 Weekly Meetings

The CM will hold weekly on-site meetings with the project team during active construction. Portions of these meeting will be allotted to discuss quality and engineering. Those present shall include the CM; CQA FR; and the CQC Manager and on-site representative. Other key participants from IKEC, the Engineer, Contractor, and the Subcontractor will be included in these meetings as appropriate.

The primary purpose of the weekly meetings shall be to confirm that all parties involved with field activities are familiar with the design, required procedures, and associated quality objectives, along with any issues (e.g., safety, environmental) related to field implementation. Topics to be addressed at this meeting shall include a review of the schedule, any outstanding RFIs, outstanding change orders, status of Subcontractor submittals, and quality issues. The CM, or representative, shall provide minutes of each meeting for inclusion in the project records.

4.6.4 Additional Meetings

Other on-site meetings will be organized to address site-specific issues that need quick resolution but are not conducive to the weekly or other regularly scheduled meetings or that require specific personnel to be present and to work through specific issues as they arise. Such meetings will be documented on the CQC and CQA daily field reports.

5.0 QUALITY MANAGEMENT DOCUMENTATION

5.1 PROJECT DOCUMENTATION

Project CQA documentation shall be obtained and maintained by the CQA Manager and copied to the Engineer during all phases of field implementation. Project CQC documentation shall be obtained and maintained by the CM or identified representative and copied to the Engineer. The Subcontractor is required to submit all data collected, both raw and processed, to the Contractor. Transfer of these data should be through Procore.

Distribution of the project documentation shall be in accordance with Table 5-1.

Quality Management Documentation

Table 5-1. Reporting Responsibility

Item	Originator	Primary Recipients	Secondary Recipients
Daily CQA Report	CQA FR	CQA Supervisor	CM, EOR, CQA Manager, Subcontractor
Daily CQC Report	CQC Team	СМ	CQA Manager, EOR
Request for Information (RFI): Submittal	Subcontractor	СМ	EOR CQA Manager
Request for Information (RFI): Approval and RFI Log	СМ	EOR	CQA Supervisor CQA Manager
Observed Deficiency Log	CQA FR, CQA Supervisor	CM, CQA Manager	Subcontractor
Nonconformance Reports and Log	CQA Supervisor, CQA Manager	CM, EOR	Subcontractor
Subcontractor Submittals	Subcontractor	СМ	EOR, CQA Supervisor
Subcontractor Submittal Approval and Log	Subcontractor	СМ	EOR, CQA Manager
CQC Testing Results and Log	CQC Team	СМ	CQA Manager, EOR
CQC Correspondence and Log	Subcontractor	СМ	CQA Manager, EOR
Design Revisions and Log	EOR	CQA Manager	Subcontractor, CM
Subcontractor Daily Production Report	Subcontractor	СМ	EOR
Weekly Meeting Minutes	СМ	All Present	N/A
Construction Certification Report	CQA Manager	EOR	СМ

Quality Management Documentation

5.2 CQA DOCUMENTATION

The CQA documentation shall include, but is not limited to, the following:

- · Daily field report;
- RFI responses;
- ODs;
- NCRs;
- CQA correspondence (i.e., memos, letters);
- · Photographic documentation; and
- Plans for Construction and Technical Specifications revisions and log.

5.2.1 CQA Daily Field Report

The CQA Team shall maintain daily field reports to document daily observations, investigations, and analyses of the construction, as well as to document the progress of the work. These reports shall include photographic documentation, where applicable. The CM will provide daily tracking of quantities, consistent with the Subcontractor pay items (hard quantities, standby hours tracked separately by CM). This daily tracking will allow independent assessment of the Subcontractor quantities in the team's daily field report.

5.2.2 Photographs

The CQA Team shall maintain a photographic record of the field implementation, documenting the progress of project construction. For the purpose of construction, photographs will be taken as needed to document processes, procedures, and any deficiencies or nonconformance, and will provide a photographic record for inclusion in the project record. Each photograph shall have the date recorded, the name of the person taking the photo (if by someone other than the daily field report author), and the location of photographs. This information shall be noted in the daily field report or the photographic log.

5.2.3 Material Testing Reports

CQA material testing reports will be compiled and distributed to the project team. Daily summaries and offsite test CQA results will be included in the CQA Daily Field Report. Reports shall include CQA testing results for both laboratory and field testing.

5.2.4 Observed Deficiencies (ODs)

Observed Deficiencies (ODs) shall identify and document deficiencies in quality, workmanship, materials, equipment, or supplies and unauthorized deviations from Plans for Construction or the Technical Specifications. The OD log is used to track and rectify deficient events that do not need to be escalated to the NCR level. The following procedures shall be used to document ODs:

Quality Management Documentation

- When the Subcontractor, Engineer, or CM notices an observed deficiency, the CQA FR records it in the corresponding CQA daily report.
- The CQA Supervisor will enter the OD into the Observations tool in Procore along with the following
 information: referenced daily report number, observed date, deficiency description, reference to
 the corresponding requirement (if applicable), hold point (if applicable), and responsible party.
- The CQA Team, CM, and the Subcontractor will work to establish a resolution and corresponding timeframe for the OD.
- Once a corrective action for the OD has been agreed upon by all involved parties, it will be implemented by the responsible party (if necessary).
- After the OD is verified to be resolved, the CQA FR will record it in the corresponding CQA daily report.
- The CQA Supervisor will enter the following information into the Observations tool in Procore: referenced daily report number, the resolved date, and corrective action description.
- The Observations tool in Procore will be maintained by the CQA Supervisor for tracking the status
 of OD events.

5.2.5 Nonconformance Reports

Nonconformance Reports (NCRs) shall identify, report, and document a nonconforming event in quality, workmanship, materials, equipment, or supplies and unauthorized deviations from Plans for Construction or the Technical Specifications. The following procedures shall be used to report nonconformance:

- When a nonconformance is observed, whether by the Engineer, Subcontractor, or CM, the CQA
 FR prepares an NCR that describes deficiencies noted (including time, actions, locations, etc.) and
 references to the corresponding requirements. Additionally, a list of corrective actions is identified
 for the Subcontractor to complete, or meet, to the satisfaction of the Engineer.
- The NCR form is then routed to the Engineer for assessment, with a disposition on the installed work/materials that need to be replaced, if any. The form is then routed to the CM for finalization.
- The CM then routes the NCR package to the Engineer for final review and signature and returns it to the CM, if acceptable. Once that process is complete, the CM issues the NCR to the Subcontractor.
- The Subcontractor provides a list of proposed corrective actions on the form and returns it to the CM for processing and issuance to the CQA Manager. If the proposed corrective action is acceptable, the CQA Manager signs the NCR and includes a list of required documentation to be provided by the Subcontractor to confirm completion of the corrective action. The NCR is then returned to the CM for processing and issued to the Engineer for final approval and signature. The form is then routed to the CM for issuance to the Subcontractor for implementation. If the proposed corrective action is not deemed acceptable, the CQA Manager returns the form to the CM with additional comments for issuance to the Subcontractor for review and revision.

Quality Management Documentation

- The process is repeated until the Subcontractor's proposed corrective actions are acceptable to the CQA Manager.
- On completion of the rework identified as deficient or nonconforming, the CQA Manager will
 conduct a reassessment of the items noted in the NCR. If the reworked items are found acceptable,
 it will be so noted on the NCR. If, however, the items are still not acceptable to the CQA Manager,
 the items will be rejected and must be reworked before it is resubmitted for further assessment.
- The CM and the CQA Manager will periodically review the status of NCRs and will work with the Subcontractor to establish a timetable for the final resolution of all deficiencies.
- A Nonconformance Log will be maintained by the CM for tracking the status of nonconforming items.

5.3 PLANS AND TECHNICAL SPECIFICATIONS REVISIONS

Periodically during construction, changes to the Plans for Construction and/or Technical Specifications may be required. These changes will be reviewed and drafted by the Engineer and approved by the Engineer prior to field implementation. Any deviations and changes to the Plans for Construction and Specifications require review and concurrence from the Contractor. The revisions will be included on a revision log and in the project records.

5.4 CQC DOCUMENTATION

The CQC documentation shall include, but not be limited to, the following:

- · CQC Daily Field Report;
- Field Observation Logs and Test Data Sheets;
- Subcontractor Submittals and Shop Drawings;
- Material Conformance Test Results;
- Construction Problem and Solution Reports;
- Photographic Documentation;
- Design and/or Specification Modifications; and
- Meeting Minutes.

5.4.1 CQC Daily Report

The CQC report shall include a summary of work performed for the day; CQC tests performed; test results; and a "remarks" section that will contain pertinent information, including significant observations, problems encountered during field implementation, and delays encountered. The following CQC data is to be provided in the report:

Quality Management Documentation

- Date.
- Weather.
- Quantities of material received on-site with corresponding delivery tickets.
- · Quantities of materials used.
- · List of CQC tests performed.
- Remarks section outlining any issues, delays, etc., that were encountered during the day.
- Updated drawings, mapping, and graphical representations of field work.
- Quantities of materials and/or debris to be hauled off-site and disposed of at locations not owned, operated, or maintained by the Owner, including proper chain of custody, required haul tickets, and scale tickets.
- Daily hold points.
- Photographs of daily construction activities.

In addition to this reporting, refer to the Technical Specifications for more detailed requirements.

ATTACHMENT A

Material Testing Schedule

Materials Testing Schedule

MATERIAL	PROPERTY	TEST	VALUE	QC FREQUENCY	QA FREQUENCY
Concrete Cast-in-Place Concrete	Compressive Strength Entrained Air Content	ASTM C39 ASTM C231	4,500 psi 2.5 - 6.0 %	1 / 50 CY placed or 1 / day whichever is more frequent 1 / delivery	200 CY placed. Also review QC laboratory reports Observe Only
	Slump	ASTM C143	3 ± 1	1 / delivery	Observe Only
CCR Fill					
23	Standard Proctor	ASTM D698	laboratory test	1 / change in material	Review laboratory reports
	Field Density and Moisture	ASTM D6938	Min. 85%, within 2% of optimum moisture content	5 / acre per lift	1 / acre per lift
Phase 4 CCR Removal Verification					
	CCR Removal Verification	Visual Observation	Visual observations and use of the Munsell Soil Color Chart will be used to confirm that all visible CCR has been excavated from the footprint. ³	Observations at each point on a staked 100'x100' grid across the footprint. Observations will include taking photographs and describing soil color. ³	Observations at each point on a staked 100'x100' grid across the footprint. Observations will include taking photographs and describing soil color. ³
Geosynthetic Clay Liner (GCL) GCL	Bentonite Mass/Area	ASTM D5993	≥ 0.75	1 / 40,000 SF	Review Only
	Average Peel Strength	ASTM D6496	3.5 lbs/in minimum	1 / 100,000 SF	Review Only
	Average Tensile Strength	ASTM D6768	45 lb/in minimum	1 / 100,000 SF	Review Only
	Permeability	ASTM D5887	less than or equal to 5 x 10^-9 cm/sec	Per LOT	Review Only
	Large scale direct shear testing	ASTM D5321	laboratory test	1 test per material interface	review laboratory reports provided by CQC Manager

Materials Testing Schedule

MATERIAL	PROPERTY	TEST	VALUE	QC FREQUENCY	QA FREQUENCY
Flexible Membrane Liner (FML) 40 mil LLDPE Geomembrane	Large scale direct shear testing	ASTM D5321	laboratory test	1 test per material interface	review laboratory reports provided by CQC Manager
	Seam Properties - Shear Strength	ASTM D6392	Fusion - 60 lbs/in , Extrusion - 60 lbs/in	Cut 1 sample / 500 linear feet of weld	destructive test sample provided by CQC Manager
	Seam Properties - Peel Strength	ASTM D6392	Fusion - 50 lbs/in , Extrusion - 44 lbs/in	Cut 1 sample / 500 linear feet of weld	destructive test sample provided by CQC Manager
	Trial Welds	ASTM D6392	Fusion: 50 lbs/in peel; 60 lbs/in shear Extrusion: 44 lbs/in peel; 60 lbs/in shear	2 / operator / machine / day (morning and mid-shift, max 4 hr work intervals)	Observation Only
	Vacuum Testing	ASTM D5641	Standard Practice for Geomembrane Seam Evaluation by Vacuum Chamber.	1 / extrusion weld and repair location	Observation Only
	Air Pressure Testing	ASTM D5820	Standard Practice for Pressurized Air Channel Evaluation of Dual Seamed Geomembranes	1 / wedge weld and repair location	Observation Only
60 mil HDPE Geomembrane	Large scale direct shear testing	ASTM D5321	laboratory test	1 test per material interface	review laboratory reports provided by CQC Manager
	Seam Properties - Shear Strength	ASTM D6392	Fusion - 120 lbs/in , Extrusion - 120 lbs/in	Cut 1 sample / 500 linear feet of weld	destructive test sample provided by CQC Manager
	Seam Properties - Peel Strength	ASTM D6392	Fusion - 91 lbs/in , Extrusion - 78 lbs/in	Cut 1 sample / 500 linear feet of weld	destructive test sample provided by CQC Manager
	Trial Welds	ASTM D6392	Fusion: 91 lbs/in peel; 120 lbs/in shear Extrusion: 78 lbs/in peel; 120 lbs/in shear	2 / operator / machine / day (morning and mid-shift, max 4 hr work intervals)	Observation Only
	Vacuum Testing	ASTM D5641	Standard Practice for Geomembrane Seam Evaluation by Vacuum Chamber.	1 / extrusion weld and repair location	Observation Only
	Air Pressure Testing	ASTM D5820	Standard Practice for Pressurized Air Channel Evaluation of Dual Seamed Geomembranes	1 / wedge weld and repair location	Observation Only

Materials Testing Schedule

MATERIAL	PROPERTY	TEST	VALUE	QC FREQUENCY	QA FREQUENCY
Soils Cover Soil	Soil Classification	ASTM D2487	CL, CH, MH, or ML, CL-ML, SC, or SM-SC according to the Unified Soil Classification System, or a combination of these groups	1 / source / change in material	Review laboratory reports
	Standard Proctor	ASTM D698	laboratory test	1 / source / change in material	Review laboratory reports
	Field Density and Moisture	ASTM D6938	Min. 92%, within 2% of optimum moisture content	5 / acre / lift	1 / acre / lift
Vegetative Cover	Soil Classification	ASTM D5268	Soils used for vegetative cover shall conform to the requirements set forth in ASTM D5268, unless otherwise approved based on the soils ability to sustain vegetation	1 / source / change in material	Review laboratory reports
	Agronomic Testing	-	laboratory test	1 / 10 acres	Review laboratory reports
Clay Berm Soil	Soil Classification	ASTM D2487	CL, CH, MH, or ML, CL-ML, SC, or SM-SC according to the Unified Soil Classification System, or a combination of these groups	1 / source / change in material	Review laboratory reports
	Standard Proctor	ASTM D698	laboratory test	1 / source / change in material	Review laboratory reports
	Field Density and Moisture	ASTM D6938	Min. 95%, within 2% of optimum moisture content	5 / acre / lift	1 / acre / lift
Anchor Trench Backfill	Standard Proctor	ASTM D698	laboratory test	1 / source / change in material	Review laboratory reports
	Field Density and Moisture	ASTM D6938	Compact each layer of material with at least three passes of a vibratory plate compactor with in-place moisture within -2% to +2% of optimum moisture content		1 / 500 linear feet of trench

Materials Testing Schedule

MATERIAL	PROPERTY	TEST	VALUE	QC FREQUENCY	QA FREQUENCY
Utility/Pipe Trench Backfill	Standard Proctor	ASTM D698	laboratory test	1 / source / change in material	Review laboratory reports
	Field Density and Moisture	ASTM D6938	Min. 95%, within 2% of optimum moisture content	1 / 100 linear feet of trench	1 / 500 linear feet of trench
HDPE Pipe HDPE Gravity Pipe	Low Pressure Air Test	ASTM F1417	Standard Practice for Installation Acceptance of Plastic Non-pressure Sewer Lines Using Low-Pressure Air	1 / pipe run	Observation Only
Slide Gates Slide Gates	Leak Testing	AWWA C560	AWWA Standard for Cast-Iron Slide Gates	1 / slide gate	Observation Only
Materials Delivered to Site	Defects Conformance to Submittals	Visual Observation Visual Observation	no defects conforms to plans	material delivery material delivery	material delivery material delivery

Notes:

- (1) Testing frequency may be adjusted as directed by the CQA Manager
- (2) This table does not include all required quality control testing. The Subontractor shall be solely responsible for the proper implementation of its Quality Control Program.
- (3) Once CCR removal verification procedures are completed and documented, an additional 6 inches of soil will be excavated across the footprint.

APPENDIX K

Post Closure Plan

Post-closure Plan CFR 257.104(d)

West Boiler Slag Pond

Clifty Creek Station Madison, Indiana

April 2021

Prepared by: Indiana-Kentucky Electric Corporation 3932 U.S. Route 23 Piketon, OH 45661

Table of Contents

1.0	OBJECTIVE	1
2.0	DESCRIPTION OF THE CCR UNIT	1
3.0	DESCRIPTION OF THE POST-CLOSURE PLAN 257.104(d)(1)(i)	1
4.0	POST-CLOSURE CONTACT 257.104(d)(1)(ii)	3
5.0	POST-CLOSURE PLANNED USE 257.104(d)(1)(iii)	3

1.0 OBJECTIVE

This report has been prepared to fulfill the requirements of 40 CFR 257.102(b) of the Coal Combustion Residuals (CCR) Rule to develop a Closure Plan for the Clifty Creek Station's West Boiler Slag Pond.

2.0 DESCRIPTION OF THE CCR UNIT

The Clifty Creek Station is located on the shore of the Ohio River near Madison, Indiana and consists of six coal-fired electric generating units; each nominally rated at 217 megawatts, that began producing electricity in 1955 to support the Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant located near Piketon, Ohio. The West Boiler Slag Pond is located immediately west of the Station and south of Clifty Hollow Rd. Upon commencing operation, the Clifty Creek Station began sluicing CCRs into the West Boiler Slag Pond for purposes of storage.

The West Boiler Slag Pond embankment is approximately 2,500 feet long, and encompasses approximately 75 acres, with about 35 acres of surface water. The top of the dike is located at elevation 475 feet, and varies in height above the adjacent plant grades, with a maximum height of approximately 41 feet.

3.0 DESCRIPTION OF THE POST-CLOSURE PLAN 257.102(b)(1)(i)

[A description of the monitoring and maintenance activities required in paragraph (b) of this section for the CCR unit, and the frequency at which these activities will be performed]

3.1 Section 257.104(b)(1)

[Maintaining the integrity and effectiveness of the final cover system including making repairs to the final cover as necessary to correct the effects of the settlement, subsidence, erosion, or other events and preventing run-on and run-off from eroding or otherwise damaging the final cover.]

Inspections are performed for the items noted below. The inspection frequencies are scheduled to properly detect any issues so that repairs can be performed before significant harm occurs.

- <u>Embankment</u>: The waste embankment will be inspected for slides, settlement, subsidence, displacement, and cover condition (see below).
- <u>Final Cover Surface</u>: The Final Cover surface will be inspected for any ponding of water or flat areas. Due to the design contours required to achieve the final cap grade, special attention will be focused to ensure that no settlement, subsidence, erosion, depressions or flat areas exist and that no water is allowed to pond above the cap system. Condition of the vegetation will be observed for maintenance needs (i.e., gaps in vegetation, presence of undesirable trees or brush).

• <u>Stormwater Management System</u>: The stormwater management system, including channels, culverts, slope drains, etc., will be inspected for erosion, integrity of channel lining, ponding, and accumulated sediment.

Maintenance during the post-closure care period will be performed as discussed below following the facility inspections.

- <u>Embankment:</u> Embankments will be inspected for slides, settlement, subsidence, displacement, and cover condition. Any areas exhibiting any such conditions will be repaired by reworking, replacing and/or compacting the material to design grade/specifications.
- <u>Erosion Damage Repair</u>: Any areas exhibiting erosion will be repaired by reworking, replacing and/or compacting the material to design grade/specifications, and reseeding the area. Applications of additional fertilizer, selective herbicides, rodent control measures, etc. will be implemented as necessary. The selection of fertilizers and herbicides, will strive to minimize their impact on groundwater. Follow-up monitoring of the repaired area will be conducted.
- Settlement, Subsidence, Displacement: Any areas at the closed site exhibiting evidence of settlement, subsidence, or displacement will be examined to determine the cause of the movement. If backfilling or placing additional fill material is needed to maintain the integrity of the closed structure, it will be performed in accordance with the site/closure specifications, including seeding. If the condition reoccurs or persists, or if the severity of the condition initially is judged to warrant it, a detailed investigation of the cause will be performed and remedial action will be performed. Repairs will be made as necessary. Follow-up monitoring of the area will be performed.
- <u>Closure Cap Surface</u>: Any areas that show signs of ponding water or flat contours will be observed and addressed. Due to the design contours required to achieve the final cap grade, special attention will be focused on the cap surface to promote drainage, reseeded to support vegetative growth, and maintained to minimize the ponding of water.
- <u>Stormwater Drainage System</u>: The channel linings are specified for design velocities. Maintenance of the stormwater management system will consist of removing sediment build up and/or undesirable vegetation from the stormwater management system's channels, culverts, and sediment basins as required. Eroded areas will be repaired by back-filling and reseeding in accordance with the specifications. Damage to culverts will be repaired; structure replacement will be performed if needed.

Primary and Secondary Treatment Basins: Maintenance of the treatment basins will
primarily consist of periodic inspections of the discharge structures and piping to ensure
proper operation. Accumulated sediment will be removed from the basins as needed to
maintain capacity requirements.

3.2 SECTION 257.104(b)(3)

[Maintaining the groundwater monitoring system and monitoring the groundwater in accordance with the requirements of §§257.90 through 257.98.]

The groundwater monitoring system will be observed for the general integrity of the wells, well casings and well protective casings. Any damaged portions of the monitoring wells and/or their protective casings will be replaced in-kind.

Monitoring the groundwater will be in accordance with the groundwater monitoring plan for this facility and in accordance with the requirements of §§257.90 through 257.98.

4.0 POST-CLOSURE CONTACT 257.104 (d)(1)(ii)

[The name, address, telephone number and email address of the person or office to contact about the facility during the post-closure care period.]

The name, address, telephone number, and email address of the person to contact about the facility during the post-closure period will be provided upon notification of closure.

5.0 POST-CLOSURE PLANNED USE 257.104 (d)(1)(iii)

[A description of the planned uses of the property during the post-closure period. Post-closure use of the property shall not disturb the integrity of the final cover, liner(s), or any other component of the containment system, or the function of the monitoring systems unless necessary to comply with the requirements in this subpart...]

The post-closure use of the property will be undisturbed vacant land space, except for commercial purposes, such as the barge loading facility located on the southeastern corner or industrial uses associated with Clifty Creek Station processes. The activities occurring on the closed CCR unit will be related to the Post-Closure care activities and access to the barge loading facility. All other activities will be prohibited.

Stantec Consulting Services Inc. 11687 Lebanon Road, Cincinnati OH 45241

October 11, 2016 File: 175534018 Revision 0

Indiana-Kentucky Electric Corporation 3932 U.S. Route 23 P.O. Box 468 Piketon, Ohio 45661

RE:

Closure and Post-Closure Plans
West Boiler Slag Pond
EPA Final Coal Combustion Residuals (CCR) Rule
Clifty Creek Station
Madison, Jefferson County, Indiana

1.0 PURPOSE

This letter documents Stantec's certification of the EPA Final CCR Rule closure and post-closure plans for the Indiana-Kentucky (IKEC) Clifty Creek Station's West Boiler Slag Pond.

2.0 CLOSURE AND POST-CLOSURE PLAN

The closure plans describe the steps necessary to close the CCR units at any time during the life of the unit and is subject to the requirements described in 40 CFR 257.102(b). The post-closure plans describe the monitoring and maintenance activities to be performed during the post-closure period of the unit and is subject to the requirements of 40 CFR 257.104(d).

3.0 SUMMARY OF FINDINGS

The EPA Final CCR Rule closure and post-closure plans are conceptual and subject to the completion of all necessary environmental reviews. They are therefore subject to change at any time. The attached closure and post-closure plans demonstrate compliance with the requirements set forth in 40 CFR 257.102(b) and 257.104(d).

4.0 QUALIFIED PROFESSIONAL ENGINEER CERTIFICATION

I, Stan A. Harris, being a Professional Engineer in good standing in the State of Indiana, do hereby certify, to the best of my knowledge, information, and belief:

- 1. that the information contained in this certification is prepared in accordance with the accepted practice of engineering;
- 2. that the information contained herein is accurate as of the date of my signature below;

October 11, 2016 Page 2 of 2

RE: Closure and Post-Closure Plans

West Boiler Slag Pond

EPA Final Coal Combustion Residuals (CCR) Rule

Clifty Creek Station

Madison, Jefferson County, Indiana

3. that the closure plan for the IKEC Clifty Creek Station's West Boiler Slag Pond meets the requirements described in 40 CFR 257.102(b); and

4. that the post-closure plan for the IKEC Clifty Creek Station's West Boiler Slag Pond meets the requirements of 40 CFR 257.104(d).

DATE 26/11/16

SIGNATURE

ADDRESS: Stantec Consulting Services Inc.

11687 Lebanon Road Cincinnati, OH 45241

TELEPHONE: (513) 842-8200

ATTACHMENT: Clifty Creek West Boiler Slag Pond Closure and Post-Closure Plans

APPENDIX L

Closure and Post-Closure Cost Estimate Opinion of Closure Costs
West Boiler Slag Pond
Clifty Creek Plant
Indiana-Kentucky Electric Corporation
Madison, Jefferson County, Indiana

Facility Name: Clifty Creek West Boiler Slag Pond

Facility Location: Madison, Indiana

Facility County: Jefferson

Total Waste Fill Acreage: 89.6 Acres
Total Grading Acreage: 93.9 Acres

Closure Year: 2020-2025

Phase 2 - 4 Acreage for Closure
(Based on MSW Landfill Closure Plan State Form 50391, Sections III and VI.)

III. LABOR, MATERIALS, & TESTING (Provide a listing of items necessary to close the facility. For items that will vary depending upon the number of acres to be closed, the quantities should be indicated on a per-acre basis.

80.4

4,033

\$

1,800.00

Acres

A. Item	B. Quantity	C	. Units (per acre)
Geosynthetic materials (geomembrane, geotextile, geocomposite drainage layer)	73.9	\$	88,761.60
Uncompacted 30-inch soil layer	73.9	\$	35,717.53
6-inch vegetative soil layer	73.9	\$	12,524.64
Vegetative cover	73.9	\$	3,288.19
Surveying	73.9	\$	850.00
Engineering certification	73.9	\$	1,392.86
Additional items	lump sump		#REF!
Deed notation	lump sump	\$	10,000.00

V. COST PER ACRE FOR FINAL COVER & VEGETATION

A. What Percent of Final Cover and Topsoil is Available from Areas that are Controlled, and will be Controlled through Post-Closure, by the Permittee?

1. % of final cover: 0%

2. Describe location of sources: Offsite borrow sources are being assessed.

3. % of topsoil:

4. Describe the location of sources: Offsite borrow sources are being assessed.

B. Cost per Acre for Acquisition and Placement of 30-inch Soil Layer

1. Acquisition

a. Quantity of soil needed per acre (cubic yard (yd³)/acre)

b. Excavation unit cost (\$/yd³) (if obtained onsite)	J	N/A
c. Purchase unit cost (\$/yd³) (if obtained offsite)	\$	0.50
d. Delivery unit cost (\$/yd3) (if obtained offsite)	\$	5.50

e. Acquisition cost (\$/acre) \$ 24,198.00 [1a * (1c+1d)]

2. Placement and Compaction

d. Testing cost (\$/acre)

a. Placement/spreading unit cost	\$ 2.41	
b. Compaction unit cost (\$/yd ³)	\$ -	

c. Placement and compaction cost (\$/acre) \$ 9,719.53 [1a * (2a+2b)]

3. Testing

a. Soil classification (if soil source is of variable quality) (\$/acre)	\$	500.00
b. Survey control for cover thickness and proper slopes (\$/acre)	\$	1,300.00
c. Density testing (if planned) (\$/acre)	N/A	

4. TOTAL COST, SOIL COVER (\$/acre) \$ 35,717.53 [1e + 2c + 3d]

\$	4,840 5.67	
\$		
\$	5.67	
Φ	2.19	
\$	7.38	
\$	-	
\$	73,761.60	[1a * (1b+1c+1d)]
\$	-	
\$	10,000.00	
\$	5,000.00	
\$	15,000.00	[3a + 3b]
\$	88,761.60	[1f + 2 +3c]
\$	10,579.77	[1a * (1c+1d)]
\$	2.41	
\$	1,944.87	[1a * 2a]
Ф.	10 504 64	[10 + 26]
Ф	12,524.04	[1e + 2b]
\$	3,288.19	[1a + 1b + 1c]
	80	
	30	
	24	
	720	[1b * 1c]
	240	
	1,040	[1a + 1d + 1e]
\$	120.00	,
\$	124,800.00	[1f * 1g]
•	89.6	r91
\$		[1h/1i]
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ 10,000.00 \$ 5,000.00 \$ 15,000.00 \$ 88,761.60 \$ 7.61 \$ 5.50 \$ 10,579.77 \$ 2.41 \$ 1,944.87 \$ 12,524.64 \$ 12,524.64 \$ 12,524.64

850	soil thickness survey
\$ 140,291.96	per acre
\$ 10,000.00	
Cost	
\$ 69,000,000.00	
\$ 10,990,000.00	
\$ 80,000,000.00	[A + B]
\$ 90,367,575.84	[(Acreage * VI) + VI.C]
\$ 9,036,757.58	
\$ 99,404,333.43	
ICIAL ASSURANCE ON AN INC	CREMENTAL BASIS
	\$ 140,291.96 \$ 10,000.00

Opinion of Post-Closure Costs West Boiler Slag Pond Clifty Creek Plant Indiana-Kentucky Electric Corporation Madison, Jefferson County, Indiana

Facility Name: Clifty Creek West Boiler Slag Pond

Facility Location: Madison, Indiana

Facility County: Jefferson

Total Waste Fill Acreage: 89.6 Acres Total Grading Acreage: 93.9 Acres

Closure Year: 2020-2025

Phase 2 - 4 Acreage for Closure 80.4 Acres

hase 2 - 4 Acreage for Closure		80.4	Acres
Based on MSW Landfill Closure Plan State Form 50391, Section VI.)			
Cost for Semi-Annual Inspections and Reports			
. Inspection			
a. Number of inspections during post-closure period (semi-annual inspections for 30 years		60	
b. Inspector time required (hours/insp)		30	
c. Inspector time labor cost (\$/hour)	\$	90.00	
d. Inspection cost (\$)	\$	162,000.00	[1a * 1b *
2. Report Preparation			
a. Number of reports during post-closure period		60	
b. Cost per report (\$)	\$	5,000.00	
c. Report cost	\$	300,000.00	[2a *
	•	462,000.00	[1d +
3. TOTAL COST, INSPECTIONS AND REPORTS (\$) 3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control	\$	462,000.00	
3. TOTAL COST, INSPECTIONS AND REPORTS (\$) 3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage		,	
3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan)	of the	e cost per are c 3,571.75	
3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage	of the	e cost per are o 3,571.75 89.6	
3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage c. Total Cost, Maintenance of Final Cover and Vegetation Cover	of the	e cost per are o 3,571.75 89.6	
 Cost for Maintenance of Final Cover and Vegetation/Vegetation Control Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage c. Total Cost, Maintenance of Final Cover and Vegetation Cover Vegetation Control Costs 	of the	3,571.75 89.6 320,029.07	
3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage c. Total Cost, Maintenance of Final Cover and Vegetation Cover 2. Vegetation Control Costs a. Mowing frequency (visits/30 years)	of the	3,571.75 89.6 320,029.07	calculated for final cover a
3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage c. Total Cost, Maintenance of Final Cover and Vegetation Cover 2. Vegetation Control Costs a. Mowing frequency (visits/30 years) b. Area to be mowed (acres/visit)	of the	3,571.75 89.6 320,029.07 60 93.9	
3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage c. Total Cost, Maintenance of Final Cover and Vegetation Cover 2. Vegetation Control Costs a. Mowing frequency (visits/30 years) b. Area to be mowed (acres/visit) c. Mowing unit cost (\$/acre)	of the	3,571.75 89.6 320,029.07 60 93.9 296.63	[1a *
3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage c. Total Cost, Maintenance of Final Cover and Vegetation Cover 2. Vegetation Control Costs a. Mowing frequency (visits/30 years) b. Area to be mowed (acres/visit) c. Mowing unit cost (\$/acre) d. Total mowing cost (\$)	s \$ \$ \$	3,571.75 89.6 320,029.07 60 93.9 296.63	[1a * [2a * 2b *
3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage c. Total Cost, Maintenance of Final Cover and Vegetation Cover 2. Vegetation Control Costs a. Mowing frequency (visits/30 years) b. Area to be mowed (acres/visit) c. Mowing unit cost (\$/acre) d. Total mowing cost (\$) e. Other (\$) - specify below (weed control for well access, etc.)	s \$ \$ \$ \$ \$ \$	3,571.75 89.6 320,029.07 60 93.9 296.63 1,671,213.42	[1a * [2a * 2b * [2d +
3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage c. Total Cost, Maintenance of Final Cover and Vegetation Cover 2. Vegetation Control Costs a. Mowing frequency (visits/30 years) b. Area to be mowed (acres/visit) c. Mowing unit cost (\$/acre) d. Total mowing cost (\$) e. Other (\$) - specify below (weed control for well access, etc.) f. Vegetation Control Costs	s \$ \$ \$ \$ \$ \$	3,571.75 89.6 320,029.07 60 93.9 296.63 1,671,213.42	[1a * [2a * 2b * [2d +
3. Cost for Maintenance of Final Cover and Vegetation/Vegetation Control 1. Final Cover Maintenance - The cost for cover maintenance and vegetation shall be 10% of vegetation in the closure plan (329 IAC 10-23-3(c)(5)(A)). a. 10% of cost for placement of final cover and vegetation (0.10 * cost given in Item VII.I of the closure plan) b. Total permitted fill acreage c. Total Cost, Maintenance of Final Cover and Vegetation Cover 2. Vegetation Control Costs a. Mowing frequency (visits/30 years) b. Area to be mowed (acres/visit) c. Mowing unit cost (\$/acre) d. Total mowing cost (\$) e. Other (\$) - specify below (weed control for well access, etc.) f. Vegetation Control Costs	s \$ \$ \$ \$ \$ \$	3,571.75 89.6 320,029.07 60 93.9 296.63 1,671,213.42	[1a *

E. Cost for Groundwater Water Monitoring and Well Maintenance			
1. Monitoring Well Maintenance Labor Cost			
a. Maintenance frequency (visits/30 years)		60	
b. Number of monitoring wells needing maintenance per visit		2	(estimated
c. Maintenance time required (hours/well)		4	
d. Unit labor cost (\$/hour)	\$	81.00	
e. Monitoring well maintenance labor cost (\$)	\$	38,880.00	[1a * 1b * 1c * 1d]
2. Monitoring Well Parts and Sampling Equipment Replacement Cost			
a. Number of wells needing replacement during post-closure period		0	
b. Existing monitoring well abandonment unit cost (\$)	\$	-	
c. New monitoring well construction unit cost (\$)	\$	-	(drilling charged by foot)
d. Monitoring well replacement cost (\$)	\$	-	
e. Number of pumps/bailers needing replacement during post-closure period		5	
f. Pump/bailer unit cost (\$/pump)	\$	2,000.00	
g. Pump/bailer replacement cost (\$)	\$	10,000.00	[2e * 2f]
h. Monitoring Maintenance and Pump/bailer Replacement Cost (\$)	\$	48,880.00	[1e + 2d + 2g
3. Cost for Groundwater Monitoring			
a. Number of required monitoring wells		10	
b. Monitoring frequency (semi-annual sampling for 30 years)		60	
c. Sampling cost (\$/well)	\$	1,100.00	
d. Laboratory testing cost (\$/well)	\$	400.00	
e. Statistical Analyses and Report (\$/well)	\$	300.00	
d. Groundwater Monitoring Cost (\$)	\$		[3a * 3b * (3c+3d+3e)]
4. TOTAL, GROUNDWATER MONITORING AND WELL MAINTENANCE COST	\$	1,128,880.00	[2h + 3d]
F. Cost for Methane Monitoring and Maintenance		N/A	
G. Cost for Drainage and Erosion Control Maintenance		60	
Drainage and erosion control maintenance frequency (visits/30 years)	ب	60	
2. Cost for materials to repair per visit	<u>\$</u> \$	500.00	[1 * 2]
3. Total material cost (\$) 4. Maintenance time required per visit (bours)	\$	30,000.00	[1 " 2
4. Maintenance time required per visit (hours)5. Unit labor cost	ć	10 140.00	
6. Total labor costs (\$)	<u>\$</u> \$	84,000.00	[1*4*5
7. TOTAL, DRAINAGE AND EROSION CONTROL MAINTENANCE COST	\$	114,000.00	[3 + 6]
H. Cost for Access Control and Benchmark Maintenance			
4. Fencing material cost (\$)	\$	-	Facility is fenced
7. Total labor costs (\$)	\$	-	
8. Benchmark maintenance cost (if applicable (\$)	\$	5,000.00	
0 Othor (c)			
9. Other (\$) 10. TOTAL, ACCESS CONTROL/BENCHMARK MAINTENANCE COST	\$ \$	5.000.00	[4+7+8+9
10. TOTAL, ACCESS CONTROL/BENCHMARK MAINTENANCE COST		5,000.00	[4+7+8+9]
	\$	5,000.00	[4+7+8+9
10. TOTAL, ACCESS CONTROL/BENCHMARK MAINTENANCE COST I. Optional - Maintenance of dike(s) required for facilities constructed in floodplain/floodw	\$	5,000.00	[4+7+8+9]
10. TOTAL, ACCESS CONTROL/BENCHMARK MAINTENANCE COST I. Optional - Maintenance of dike(s) required for facilities constructed in floodplain/floodw J. Other costs - Costs not included in the above items should be listed here. They may	\$	5,000.00	[4+7+8+9]
10. TOTAL, ACCESS CONTROL/BENCHMARK MAINTENANCE COST I. Optional - Maintenance of dike(s) required for facilities constructed in floodplain/floodw J. Other costs - Costs not included in the above items should be listed here. They may	\$		[4+7+8+9]
 TOTAL, ACCESS CONTROL/BENCHMARK MAINTENANCE COST Optional - Maintenance of dike(s) required for facilities constructed in floodplain/floodw Other costs - Costs not included in the above items should be listed here. They may include such items as access road maintenance, lift station power costs, etc. Please enter 	\$ ay		[4 + 7 + 8 + 9]
 TOTAL, ACCESS CONTROL/BENCHMARK MAINTENANCE COST Optional - Maintenance of dike(s) required for facilities constructed in floodplain/floodw Other costs - Costs not included in the above items should be listed here. They may include such items as access road maintenance, lift station power costs, etc. Please enter 	\$ ay		
 TOTAL, ACCESS CONTROL/BENCHMARK MAINTENANCE COST Optional - Maintenance of dike(s) required for facilities constructed in floodplain/floodw Other costs - Costs not included in the above items should be listed here. They may include such items as access road maintenance, lift station power costs, etc. Please enter "N/A" if you do not have additional costs to place here. 	\$ ay	A	[A3 + B3 + C4 + D3 + E4 +
 TOTAL, ACCESS CONTROL/BENCHMARK MAINTENANCE COST Optional - Maintenance of dike(s) required for facilities constructed in floodplain/floodw Other costs - Costs not included in the above items should be listed here. They may include such items as access road maintenance, lift station power costs, etc. Please enter "N/A" if you do not have additional costs to place here. K. TOTAL POST-CLOSURE COST 	\$ ay N//	A 3,701,122.49	[A3 + B3 + C4 + D3 + E4 +